Einstein-Maxwell-scalar black holes: classes of solutions, dyons and extremality

Abstract

Spherical black hole (BH) solutions in Einstein-Maxwell-scalar (EMS) models wherein the scalar field is non-minimally coupled to the Maxwell invariant by some coupling function are discussed. We suggest a classification for these models into two classes, based on the properties of the coupling function, which, in particular, allow, or not, the Reissner- Nordström (RN) BH solution of electrovacuum to solve a given model. Then, a comparative analysis of two illustrative families of solutions, one belonging to each class is performed: dilatonic versus scalarised BHs. By including magnetic charge, that is considering dyons, we show that scalarised BHs can have a smooth extremal limit, unlike purely electric or magnetic solutions. In particular, we study this extremal limit using the entropy function formalism, which provides insight on why both charges are necessary for extremal solutions to exist.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    V. Moncrief, Odd-parity stability of a Reissner-Nordstrom black hole, Phys. Rev.D 9 (1974) 2707 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    V. Moncrief, Stability of Reissner-Nordstrom black holes, Phys. Rev.D 10 (1974) 1057 [INSPIRE].

  3. [3]

    G.W. Gibbons and C.M. Hull, A Bogomolny bound for general relativity and solitons in N = 2 supergravity, Phys. Lett.B 109 (1982) 190.

    ADS  MathSciNet  Google Scholar 

  4. [4]

    G.W. Gibbons and P.K. Townsend, Vacuum interpolation in supergravity via super p-branes, Phys. Rev. Lett.71 (1993) 3754 [hep-th/9307049] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. [5]

    I. Robinson, A solution of the Maxwell-Einstein equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.7 (1959) 351 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. [6]

    B. Bertotti, Uniform electromagnetic field in the theory of general relativity, Phys. Rev.116 (1959) 1331 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. [7]

    S.D. Majumdar, A class of exact solutions of Einstein’s field equations, Phys. Rev.72 (1947) 390 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    A. Papapetrou, Einstein’s theory of gravitation and flat space, Proc. Roy. Irish Acad.52A (1948) 11 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  9. [9]

    J.B. Hartle and S.W. Hawking, Solutions of the Einstein-Maxwell equations with many black holes, Commun. Math. Phys.26 (1972) 87 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    A.E. Mayo and J.D. Bekenstein, No hair for spherical black holes: charged and nonminimally coupled scalar field with selfinteraction, Phys. Rev.D 54 (1996) 5059 [gr-qc/9602057] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    T. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. )1921 (1921) 966 [Int. J. Mod. Phys.D 27 (2018) 1870001] [arXiv:1803.08616] [INSPIRE].

  12. [12]

    O. Klein, Quantum theory and five-dimensional theory of relativity (in German and English), Z. Phys.37 (1926) 895 [Surv. High Energ. Phys.5 (1986) 241] [INSPIRE].

  13. [13]

    A. Einstein, The field equations of gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin1915 (1915) 844 [INSPIRE].

    MATH  Google Scholar 

  14. [14]

    T. Appelquist, A. Chodos and P.G.O. Freund, Modern Kaluza-Klein theories, Addison Wesley, Reading, U.S.A. (1987).

    Google Scholar 

  15. [15]

    E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The lagrangian, Phys. Lett.80B (1978) 48 [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys.B 298 (1988) 741 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. [17]

    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev.D 43 (1991) 3140 [Erratum ibid.D 45 (1992) 3888] [INSPIRE].

  18. [18]

    J.F.M. Delgado, C.A.R. Herdeiro and E. Radu, Violations of the Kerr and Reissner-Nordstr¨om bounds: horizon versus asymptotic quantities, Phys. Rev.D 94 (2016) 024006 [arXiv:1606.07900] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    A. Anabalon, D. Astefanesei and R. Mann, Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP10 (2013) 184 [arXiv:1308.1693] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    D. Astefanesei, D. Choque, F. Gómez and R. Rojas, Thermodynamically stable asymptotically flat hairy black holes with a dilaton potential, JHEP03 (2019) 205 [arXiv:1901.01269] [INSPIRE].

  21. [21]

    A. Anabalón and D. Astefanesei, On attractor mechanism of AdS4 black holes, Phys. Lett.B 727 (2013) 568 [arXiv:1309.5863] [INSPIRE].

    ADS  MATH  Google Scholar 

  22. [22]

    G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N = 4 supergravity, Nucl. Phys.B 207 (1982) 337 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. [23]

    C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys.D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. [24]

    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett.77 (1996) 4992 [hep-th/9607108] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    D. Astefanesei, R. Ballesteros, D. Choque and R. Rojas, Scalar charges and the first law of black hole thermodynamics, Phys. Lett.B 782 (2018) 47 [arXiv:1803.11317] [INSPIRE].

    ADS  MATH  Google Scholar 

  26. [26]

    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev.D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. [27]

    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev.D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. [28]

    R. Kallosh, N. Sivanandam and M. Soroush, The non-BPS black hole attractor equation, JHEP03 (2006) 060 [hep-th/0602005] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. [29]

    F. Larsen, A nAttractor mechanism for nAdS2/nCFT1holography, JHEP04 (2019) 055 [arXiv:1806.06330] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    H.W. Lin, J. Maldacena and Y. Zhao, Symmetries near the horizon, JHEP08 (2019) 049 [arXiv:1904.12820] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    J. Martin and J. Yokoyama, Generation of large-scale magnetic fields in single-field inflation, JCAP01 (2008) 025 [arXiv:0711.4307] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept.528 (2013) 161 [arXiv:1212.2921] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. [33]

    C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous scalarization of charged black holes, Phys. Rev. Lett.121 (2018) 101102 [arXiv:1806.05190] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    P.G.S. Fernandes, C.A.R. Herdeiro, A.M. Pombo, E. Radu and N. Sanchis-Gual, Spontaneous scalarisation of charged black holes: coupling dependence and dynamical features, Class. Quant. Grav.36 (2019) 134002 [arXiv:1902.05079] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav.22 (2005) 5121 [hep-th/0505189] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. [36]

    I.Z. Stefanov, S.S. Yazadjiev and M.D. Todorov, Phases of 4D scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics, Mod. Phys. Lett.A 23 (2008) 2915 [arXiv:0708.4141] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  37. [37]

    D.D. Doneva, S.S. Yazadjiev, K.D. Kokkotas and I.Z. Stefanov, Quasi-normal modes, bifurcations and non-uniqueness of charged scalar-tensor black holes, Phys. Rev.D 82 (2010) 064030 [arXiv:1007.1767] [INSPIRE].

    ADS  MATH  Google Scholar 

  38. [38]

    Y.S. Myung and D.-C. Zou, Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory, Eur. Phys. J.C 79 (2019) 273 [arXiv:1808.02609] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    Y.S. Myung and D.-C. Zou, Quasinormal modes of scalarized black holes in the Einstein–Maxwell–scalar theory, Phys. Lett.B 790 (2019) 400 [arXiv:1812.03604] [INSPIRE].

    ADS  MATH  Google Scholar 

  40. [40]

    Y.S. Myung and D.-C. Zou, Stability of scalarized charged black holes in the Einstein-Maxwell-scalar theory, Eur. Phys. J.C 79 (2019) 641 [arXiv:1904.09864] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    P. Dobiasch and D. Maison, Stationary, spherically symmetric solutions of Jordan’s unified theory of gravity and electromagnetism, Gen. Rel. Grav.14 (1982) 231 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. [42]

    G.W. Gibbons and D.L. Wiltshire, Black holes in Kaluza-Klein theory, Annals Phys.167 (1986) 201 [Erratum ibid.176 (1987) 393] [INSPIRE].

  43. [43]

    R. Kallosh et al., Supersymmetry as a cosmic censor, Phys. Rev.D 46 (1992) 5278 [hep-th/9205027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. [44]

    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP09 (2005) 038 [hep-th/0506177] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. [45]

    D. Astefanesei et al., Rotating attractors, JHEP10 (2006) 058 [hep-th/0606244] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav.40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. [47]

    Z.-Y. Fan and H. Lü, Charged black holes with scalar hair, JHEP09 (2015) 060 [arXiv:1507.04369] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  48. [48]

    C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev.136 (1964) B571 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. [49]

    L. Smarr, Mass formula for Kerr black holes, Phys. Rev. Lett.30 (1973) 71 [Erratum ibid.30 (1973) 521] [INSPIRE].

  50. [50]

    G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys.5 (1964) 1252 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    D. Gal’tsov, M. Khramtsov and D. Orlov, “Triangular” extremal dilatonic dyons, Phys. Lett.B 743 (2015) 87 [arXiv:1412.7709] [INSPIRE].

    ADS  MATH  Google Scholar 

  52. [52]

    A. Zadora, D.V. Gal’tsov and C.-M. Chen, Higher-n triangular dilatonic black holes, Phys. Lett.B 779 (2018) 249 [arXiv:1712.06570] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. [53]

    M.E. Abishev, K.A. Boshkayev, V.D. Dzhunushaliev and V.D. Ivashchuk, Dilatonic dyon black hole solutions, Class. Quant. Grav.32 (2015) 165010 [arXiv:1504.07657] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  54. [54]

    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP01 (2007) 096 [hep-th/0611143] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. [55]

    D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav.40 (2008) 2069 [hep-th/0611140] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. [56]

    M. Trigiante, Gauged supergravities, Phys. Rept.680 (2017) 1 [arXiv:1609.09745] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. [57]

    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    A. Anabalón, D. Astefanesei, A. Gallerati and M. Trigiante, Hairy black holes and duality in an extended supergravity model, JHEP04 (2018) 058 [arXiv:1712.06971] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. [59]

    A. Anabalón and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity, Phys. Lett.B 732 (2014) 137 [arXiv:1311.7459] [INSPIRE].

    ADS  MATH  Google Scholar 

  60. [60]

    H. Lü, Y. Pang and C.N. Pope, An ω deformation of gauged STU supergravity, JHEP04 (2014) 175 [arXiv:1402.1994] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  61. [61]

    F. Faedo, D. Klemm and M. Nozawa, Hairy black holes in N = 2 gauged supergravity, JHEP11 (2015) 045 [arXiv:1505.02986] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  62. [62]

    U. Nucamendi and M. Salgado, Scalar hairy black holes and solitons in asymptotically flat space-times, Phys. Rev.D 68 (2003) 044026 [gr-qc/0301062] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys.828 (2011) 313 [arXiv:1002.1722] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Astefanesei.

Additional information

ArXiv ePrint: 1905.08304

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Astefanesei, D., Herdeiro, C., Pombo, A. et al. Einstein-Maxwell-scalar black holes: classes of solutions, dyons and extremality. J. High Energ. Phys. 2019, 78 (2019). https://doi.org/10.1007/JHEP10(2019)078

Download citation

Keywords

  • Black Holes
  • Classical Theories of Gravity