K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett.B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys.B 499 (1997) 67 [hep-th/9703110] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Dorey and D. Tong, Mirror symmetry and toric geometry in three-dimensional gauge theories, JHEP05 (2000) 018 [hep-th/9911094] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Tong, Dynamics of N = 2 supersymmetric Chern-Simons theories, JHEP07 (2000) 019 [hep-th/0005186] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Witten, Topological quantum field theory, Commun. Math. Phys.117 (1988) 353 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP03 (2010) 089 [arXiv:0909.4559] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP05 (2012) 159 [arXiv:1012.3210] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP03 (2011) 127 [arXiv:1012.3512] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP05 (2011) 014 [arXiv:1102.4716] [INSPIRE].
Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev.D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].
J. Nian, Localization of supersymmetric Chern-Simons-matter theory on a squashed S3with SU(2) × U(1) isometry, JHEP07 (2014) 126 [arXiv:1309.3266] [INSPIRE].
V. Pestun and M. Zabzine, Introduction to localization in quantum field theory, J. Phys.A 50 (2017) 443001 [arXiv:1608.02953] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Pasquetti, Factorisation of N = 2 theories on the squashed 3-sphere, JHEP04 (2012) 120 [arXiv:1111.6905] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, Adv. Theor. Math. Phys.17 (2013) 975 [arXiv:1112.5179] [INSPIRE].
MathSciNet
Article
Google Scholar
C. Beem, T. Dimofte and S. Pasquetti, Holomorphic blocks in three dimensions, JHEP12 (2014) 177 [arXiv:1211.1986] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Nedelin, S. Pasquetti and Y. Zenkevich, T [SU(N)] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences, JHEP02 (2019) 176 [arXiv:1712.08140] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Aprile, S. Pasquetti and Y. Zenkevich, Flipping the head of T [SU(N)]: mirror symmetry, spectral duality and monopoles, JHEP04 (2019) 138 [arXiv:1812.08142] [INSPIRE].
ADS
Article
Google Scholar
Y. Imamura, H. Matsuno and D. Yokoyama, Factorization of the S3/Znpartition function, Phys. Rev.D 89 (2014) 085003 [arXiv:1311.2371] [INSPIRE].
F. Nieri and S. Pasquetti, Factorisation and holomorphic blocks in 4d, JHEP11 (2015) 155 [arXiv:1507.00261] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP03 (2017) 074 [arXiv:1701.03171] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d N = 2 theories, JHEP11 (2018) 004 [arXiv:1807.02328] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Pittelli, A refined N = 2 chiral multiplet on twisted AdS2× S1 , arXiv:1812.11151 [INSPIRE].
E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math.50 (2011) 347 [arXiv:1001.2933] [INSPIRE].
MathSciNet
Article
Google Scholar
T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys.98 (2011) 225 [arXiv:1006.0977] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032 [INSPIRE].
E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].
T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys.325 (2014) 367 [arXiv:1108.4389] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Yoshida, Factorization of 4d N = 1 superconformal index, arXiv:1403.0891 [INSPIRE].
S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, J. Phys.A 50 (2017) 443016 [arXiv:1608.02968] [INSPIRE].
P. Longhi, F. Nieri and A. Pittelli, Localization of 4d N = 1 theories on D2× T2 , arXiv:1906.02051 [INSPIRE].
J.-P. Ramis, J. Sauloy and C. Zhang, Local analytic classification of q-difference equations, Astérisque355 (2013) 1 [arXiv:0903.0853].
MathSciNet
MATH
Google Scholar
E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
A. Tabler, Monodromy of q-difference equations in 3D supersymmetric gauge theories, Master thesis, Arnold Sommerfeld Center for Theoretical Physics, Munich, Germany (2017).
G.N. Watson, The continuation of functions defined by generalized hypergeometric series, Trans. Cambridge Phil. Soc.21 (1910) 281.
T. Morita, A connection formula of the Hahn-Exton q-Bessel function, SIGMA7 (2011) 115 [arXiv:1105.1998].
T. Morita, The Stokes phenomenon for the Ramanujan’s q-difference equation and its higher order extension, arXiv:1404.2541.
T. Dreyfus and A. Eloy, q-Borel-Laplace summation for q-difference equations with two slopes, J. Diff. Eq. Appl.22 (2016) 1501 [arXiv:1501.02994].
Y. Ohyama, q-Stokes phenomenon of a basic hypergeometric series1 𝜙1 (0; a; q, x), J. Math. Tokushima Univ.50 (2016) 49.
Y. Ohyama and C. Zhang, q-Stokes phenomenon on basic hypergeometric series, in 13thSymmetries and Integrability of Difference Equations, Fukuoka, Japan (2018), pg. 35.
S. Adachi, The q-Borel sum of divergent basic hypergeometric seriesr 𝜙s (a; b; q, x), SIGMA15 (2019) 12 [arXiv:1806.05375].
MATH
Google Scholar
D. Gaiotto, Z. Komargodski and J. Wu, Curious aspects of three-dimensional N = 1 SCFTs, JHEP08 (2018) 004 [arXiv:1804.02018] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar