Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 October 2019
  • Volume 2019, article number 2, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD
Download PDF
  • R. Gauld  ORCID: orcid.org/0000-0002-3681-18551,
  • A. Gehrmann-De Ridder  ORCID: orcid.org/0000-0002-2686-96582,3,
  • E.W.N. Glover4,
  • A. Huss  ORCID: orcid.org/0000-0002-7799-909X5 &
  • …
  • I. Majer2 
  • 379 Accesses

  • 35 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present the calculation of next-to-next-to-leading order (NNLO) corrections in perturbative QCD for the production of a Higgs boson decaying into a pair of bottom quarks in association with a leptonically decaying weak vector boson: \( \mathrm{pp}\to V\mathrm{H}+X\to \mathrm{\ell}\overline{\mathrm{\ell}}\mathrm{b}\overline{\mathrm{b}}+X. \) We consider the corrections to both the production and decay sub-processes, retaining a fully differential description of the final state including off-shell propagators of the Higgs and vector boson. The calculation is carried out using the antenna subtraction formalism and is implemented in the NNLOjet framework. Clustering and identification of b-jets is performed with the flavour-kt algorithm and results for fiducial cross sections and distributions are presented for the LHC at \( \sqrt{s} \) = 13 TeV. We assess the residual theory uncertainty by varying the production and decay scales independently and provide scale uncertainty bands in our results, yielding percent-level accurate predictions for observables in this Higgs production mode computed at NNLO. Confronting a na¨ıve perturbative expansion of the cross section against the customary re-scaling procedure to a fixed branching ratio reveals that starting from NNLO, the latter could be inadequate in estimating missing higher-order effects through scale variations.

Article PDF

Download to read the full article text

Similar content being viewed by others

Production and decay of the Higgs boson in association with top quarks

Article Open access 25 February 2022

Searches for W′ bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV

Article Open access 08 August 2017

Higgs production in association with bottom quarks

Article Open access 20 February 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. CDF, D0 collaboration, Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett.109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

  4. ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett.112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].

  5. ATLAS collaboration, Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector, Phys. Lett.B 718 (2012)369 [arXiv:1207.0210] [INSPIRE].

  6. CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev.D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].

  7. ATLAS collaboration, Observation of \( H\to b\overline{b} \)decays and V H production with the ATLAS detector, Phys. Lett.B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

  8. CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett.121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].

  9. O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo — Higgs Strahlung at hadron colliders, Comput. Phys. Commun.184 (2013) 998 [arXiv:1210.5347] [INSPIRE].

  10. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett.88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

  11. O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J.C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev.D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

  13. A. Denner, S. Dittmaier, S. Kallweit and A. Muck, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett.B 740 (2015) 51 [arXiv:1407.4747] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.M. Campbell, R.K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, JHEP06 (2016) 179 [arXiv:1601.00658] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Ferrera, G. Somogyi and F. Tramontano, Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD, Phys. Lett.B 780 (2018) 346 [arXiv:1705.10304] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Caola, G. Luisoni, K. Melnikov and R. Röntsch, NNLO QCD corrections to associated WH production and H → bb decay, Phys. Rev.D 97 (2018)074022 [arXiv:1712.06954] [INSPIRE].

  19. C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP03 (2012) 035 [arXiv:1110.2368] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V. Del Duca et al., Higgs boson decay into b-quarks at NNLO accuracy, JHEP04 (2015) 036 [arXiv:1501.07226] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Mondini, M. Schiavi and C. Williams, N3LO predictions for the decay of the Higgs boson to bottom quarks, JHEP06 (2019) 079 [arXiv:1904.08960] [INSPIRE].

    Google Scholar 

  22. W. Bernreuther, L. Chen and Z.-G. Si, Differential decay rates of CP-even and CP-odd Higgs bosons to top and bottom quarks at NNLO QCD, JHEP07 (2018) 159 [arXiv:1805.06658] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP05 (2013) 082 [arXiv:1212.4504] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP10 (2013) 083 [arXiv:1306.2542] [INSPIRE].

    Google Scholar 

  25. W. Astill, W. Bizon, E. Re and G. Zanderighi, NNLOPS accurate associated HZ production with \( H\to b\overline{b} \)decay at NLO, JHEP11 (2018) 157 [arXiv:1804.08141] [INSPIRE].

    Google Scholar 

  26. A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J.C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].

  27. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

  28. V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev.D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].

    ADS  Google Scholar 

  29. F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J.C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

    Article  ADS  Google Scholar 

  30. F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and qqfinal states at NNLO QCD with the nested soft-collinear subtraction scheme, arXiv:1907.05398 [INSPIRE].

  31. M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys.B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].

  33. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett.B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].

  34. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett.B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].

  35. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].

  36. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP10 (2012) 047 [arXiv:1207.5779] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP04 (2013) 066 [arXiv:1301.4693] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Currie et al., Jet cross sections at the LHC with NNLOJET, PoS(LL2018)001 [arXiv:1807.06057] [INSPIRE].

  42. A. Banfi, G.P. Salam and G. Zanderighi, Accurate QCD predictions for heavy-quark jets at the Tevatron and LHC, JHEP07 (2007) 026 [arXiv:0704.2999] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Cacciari, G.P. Salam and G. Soyez, The anti-ktjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Google Scholar 

  44. M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett.B 641 (2006)57 [hep-ph/0512210] [INSPIRE].

  45. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  46. LHCb collaboration, Search for \( {H}^0\to b\overline{b} \)or \( \mathrm{c}\overline{\mathrm{c}} \)in association with a W or Z boson in the forward region of pp collisions, LHCb-CONF-2016-006 (2016).

  47. LHCb collaboration, Identification of beauty and charm quark jets at LHCb, 2015 JINST 10 P06013 [arXiv:1504.07670] [INSPIRE].

  48. ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].

  49. CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST13 P05011 [arXiv:1712.07158] [INSPIRE].

  50. LHCb collaboration, First measurement of the charge asymmetry in beauty-quark pair production, Phys. Rev. Lett.113 (2014) 082003 [arXiv:1406.4789] [INSPIRE].

  51. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Currie et al., Infrared sensitivity of single jet inclusive production at hadron colliders, JHEP10 (2018) 155 [arXiv:1807.03692] [INSPIRE].

    Article  ADS  Google Scholar 

  54. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    R. Gauld

  2. Institute for Theoretical Physics, ETH, CH-8093, Zürich, Switzerland

    A. Gehrmann-De Ridder & I. Majer

  3. Department of Physics, University of Zürich, CH-8057, Zürich, Switzerland

    A. Gehrmann-De Ridder

  4. Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, U.K.

    E.W.N. Glover

  5. Theoretical Physics Department, CERN, CH-1211, Geneva 23, Switzerland

    A. Huss

Authors
  1. R. Gauld
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Gehrmann-De Ridder
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. E.W.N. Glover
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. A. Huss
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. I. Majer
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to I. Majer.

Additional information

ArXiv ePrint: 1907.05836

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauld, R., Ridder, A.GD., Glover, E. et al. Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD. J. High Energ. Phys. 2019, 2 (2019). https://doi.org/10.1007/JHEP10(2019)002

Download citation

  • Received: 31 July 2019

  • Accepted: 02 September 2019

  • Published: 03 October 2019

  • DOI: https://doi.org/10.1007/JHEP10(2019)002

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature