Skip to main content

Measurement of D0, D+, D*+ and D +s production in Pb-Pb collisions at \( \sqrt{{\mathrm{s}}_{\mathrm{NN}}}=5.02 \) TeV

A preprint version of the article is available at arXiv.


We report measurements of the production of prompt D0, D+, D*+ and D +s mesons in Pb–Pb collisions at the centre-of-mass energy per nucleon-nucleon pair \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, in the centrality classes 0–10%, 30–50% and 60–80%. The D-meson production yields are measured at mid-rapidity (|y| < 0.5) as a function of transverse momentum (pT). The pT intervals covered in central collisions are: 1 < pT< 50 GeV/c for D0, 2 < pT< 50GeV/c for D+, 3 < pT< 50GeV/c for D*+, and 4 < pT< 16GeV/c for D +s mesons. The nuclear modification factors (RAA) for non-strange D mesons (D0, D+, D*+) show minimum values of about 0.2 for pT = 6–10 GeV/c in the most central collisions and are compatible within uncertainties with those measured at \( {\sqrt{s}}_{\mathrm{NN}}=2.76 \) TeV. For D +s mesons, the values of RAA are larger than those of non-strange D mesons, but compatible within uncertainties. In central collisions the average RAA of non-strange D mesons is compatible with that of charged particles for pT> 8 GeV/c, while it is larger at lower pT. The nuclear modification factors for strange and non-strange D mesons are also compared to theoretical models with different implementations of in-medium energy loss.


  1. [1]

    F. Karsch, Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions, J. Phys. Conf. Ser. 46 (2006) 122 [hep-lat/0608003] [INSPIRE].

  2. [2]

    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

  3. [3]

    S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    F.-M. Liu and S.-X. Liu, Quark-gluon plasma formation time and direct photons from heavy ion collisions, Phys. Rev. C 89 (2014) 034906 [arXiv:1212.6587] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    P. Braun-Munzinger, Quarkonium production in ultra-relativistic nuclear collisions: Suppression versus enhancement, J. Phys. G 34 (2007) S471 [nucl-th/0701093] [INSPIRE].

  8. [8]

    M. Gyulassy and M. Plumer, Jet Quenching in Dense Matter, Phys. Lett. B 243 (1990) 432 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

  10. [10]

    M.H. Thoma and M. Gyulassy, Quark Damping and Energy Loss in the High Temperature QCD, Nucl. Phys. B 351 (1991) 491 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    E. Braaten and M.H. Thoma, Energy loss of a heavy fermion in a hot plasma, Phys. Rev. D 44 (1991) 1298 [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    E. Braaten and M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma, Phys. Rev. D 44 (1991) R2625 [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    F. Prino and R. Rapp, Open Heavy Flavor in QCD Matter and in Nuclear Collisions, J. Phys. G 43 (2016) 093002 [arXiv:1603.00529] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    S. Batsouli, S. Kelly, M. Gyulassy and J.L. Nagle, Does the charm flow at RHIC?, Phys. Lett. B 557 (2003) 26 [nucl-th/0212068] [INSPIRE].

  15. [15]

    V. Greco, C.M. Ko and R. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions, Phys. Lett. B 595 (2004) 202 [nucl-th/0312100] [INSPIRE].

  16. [16]

    A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett. B 571 (2003) 36 [nucl-th/0303036] [INSPIRE].

  17. [17]

    I. Kuznetsova and J. Rafelski, Charmed hadrons from strangeness-rich QGP, J. Phys. G 32 (2006) S499 [hep-ph/0605307] [INSPIRE].

  18. [18]

    R.J. Glauber and G. Matthiae, High-energy scattering of protons by nuclei, Nucl. Phys. B 21 (1970) 135 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].

  20. [20]

    B. Alver, M. Baker, C. Loizides and P. Steinberg, The PHOBOS Glauber Monte Carlo, arXiv:0805.4411 [INSPIRE].

  21. [21]

    C. Loizides, J. Nagle and P. Steinberg, Improved version of the PHOBOS Glauber Monte Carlo, SoftwareX 1-2 (2015) 13 [arXiv:1408.2549] [INSPIRE].

  22. [22]

    ALICE collaboration, Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 09 (2012) 112 [arXiv:1203.2160] [INSPIRE].

  23. [23]

    ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( {\sqrt{s}}_{\mathrm{NN}}=2.76 \) TeV, JHEP 03 (2016) 081 [arXiv:1509.06888] [INSPIRE].

  24. [24]

    ALICE collaboration, Centrality dependence of high-p T D meson suppression in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 11 (2015) 205 [arXiv:1506.06604] [INSPIRE].

  25. [25]

    ALICE collaboration, Measurement of D + s production and nuclear modification factor in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 03 (2016) 082 [arXiv:1509.07287] [INSPIRE].

  26. [26]

    CMS collaboration, Nuclear modification factor of D 0 mesons in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 782 (2018) 474 [arXiv:1708.04962] [INSPIRE].

  27. [27]

    ALICE collaboration, D-meson production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV and in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. C 94 (2016) 054908 [arXiv:1605.07569] [INSPIRE].

  28. [28]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  29. [29]

    ALICE collaboration, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  30. [30]

    ALICE collaboration, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  31. [31]

    J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A. Akindinov et al., Performance of the ALICE Time-Of-Flight detector at the LHC, Eur. Phys. J. Plus 128 (2013) 44 [INSPIRE].

    Article  Google Scholar 

  33. [33]

    G. Puddu et al., The Zero degree calorimeters for the ALICE experiment, Nucl. Instrum. Meth. A 581 (2007) 397 [Erratum ibid. A 604 (2009) 765] [INSPIRE].

  34. [34]

    ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  35. [35]

    ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  36. [36]

    ALICE collaboration, Centrality determination in heavy ion collisions, ALICE-PUBLIC-2018-011 (2018).

  37. [37]

    ALICE collaboration, Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 116 (2016) 222302 [arXiv:1512.06104] [INSPIRE].

  38. [38]

    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  39. [39]

    ALICE collaboration, Azimuthal anisotropy of D meson production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Rev. C 90 (2014) 034904 [arXiv:1405.2001] [INSPIRE].

  40. [40]

    ALICE collaboration, Measurement of D-meson production at mid-rapidity in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 77 (2017) 550 [arXiv:1702.00766] [INSPIRE].

  41. [41]

    ALICE collaboration, Measurement of charm production at central rapidity in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2012) 128 [arXiv:1111.1553] [INSPIRE].

  42. [42]

    P.Z. Skands, The Perugia Tunes, in proceedings of the 1st International Workshop on Multiple Partonic Interactions at the LHC (MPI@LHC 08), Perugia, Italy, 27–31 October 2008, pp. 284–297 [arXiv:0905.3418] [FERMILAB-CONF-09-113-T] [INSPIRE].

  43. [43]

    CMS collaboration, Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Eur. Phys. J. C 77 (2017) 252 [arXiv:1610.00613] [INSPIRE].

  44. [44]

    R. Brun et al., GEANT Detector Description and Simulation Tool, CERN-W-5013 (1994) [INSPIRE].

  45. [45]

    X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in pp, pA and AA collisions, Phys. Rev. D 44 (1991) 3501 [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  47. [47]

    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].

  48. [48]

    M. Cacciari, S. Frixione and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].

  49. [49]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Elliptic Flow and Energy Loss of Heavy Quarks in Ultra-Relativistic heavy Ion Collisions, Phys. Rev. C 84 (2011) 024908 [arXiv:1104.2295] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    O. Fochler, J. Uphoff, Z. Xu and C. Greiner, Jet quenching and elliptic flow at RHIC and LHC within a pQCD-based partonic transport model, J. Phys. G 38 (2011) 124152 [arXiv:1107.0130] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Open Heavy Flavor in Pb + Pb Collisions at \( \sqrt{s}=2.76 \) TeV within a Transport Model, Phys. Lett. B 717 (2012) 430 [arXiv:1205.4945] [INSPIRE].

  52. [52]

    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    D.J. Lange, The EvtGen particle decay simulation package, in proceedings of the 7th International Conference on B-Physics at Hadron Machines (Beauty 2000), Sea of Galilee, Kibbutz Maagan, Israel, 13–18 September 2000, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

  54. [54]

    M. Djordjevic and M. Djordjevic, Predictions of heavy-flavor suppression at 5.1 TeV Pb + Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 024918 [arXiv:1505.04316] [INSPIRE].

  55. [55]

    M. He, R.J. Fries and R. Rapp, Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach, Phys. Lett. B 735 (2014) 445 [arXiv:1401.3817] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    R. Averbeck, N. Bastid, Z.C. del Valle, P. Crochet, A. Dainese and X. Zhang, Reference Heavy Flavour Cross Sections in pp Collisions at \( \sqrt{s}=2.76 \) TeV, using a pQCD-Driven \( \sqrt{s} \) -Scaling of ALICE Measurements at \( \sqrt{s}=7 \) TeV, arXiv:1107.3243 [INSPIRE].

  57. [57]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions, J. Phys. G 42 (2015) 115106 [arXiv:1408.2964] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies, Phys. Lett. B 777 (2018) 255 [arXiv:1703.00822] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    ALICE collaboration, Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC, arXiv:1802.09145 [INSPIRE].

  60. [60]

    M. Djordjevic, Heavy flavor puzzle at LHC: a serendipitous interplay of jet suppression and fragmentation, Phys. Rev. Lett. 112 (2014) 042302 [arXiv:1307.4702] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    A. Beraudo, A. De Pace, M. Monteno, M. Nardi and F. Prino, Heavy flavors in heavy-ion collisions: quenching, flow and correlations, Eur. Phys. J. C 75 (2015) 121 [arXiv:1410.6082] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    M. Nahrgang, J. Aichelin, P.B. Gossiaux and K. Werner, Influence of hadronic bound states above T c on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 014905 [arXiv:1305.6544] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    T. Song, H. Berrehrah, D. Cabrera, W. Cassing and E. Bratkovskaya, Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 034906 [arXiv:1512.00891] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    J. Xu, J. Liao and M. Gyulassy, Bridging Soft-Hard Transport Properties of quark-gluon Plasmas with CUJET3.0, JHEP 02 (2016) 169 [arXiv:1508.00552] [INSPIRE].

  65. [65]

    Z.-B. Kang, F. Ringer and I. Vitev, Effective field theory approach to open heavy flavor production in heavy-ion collisions, JHEP 03 (2017) 146 [arXiv:1610.02043] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    ALICE collaboration, D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 102301 [arXiv:1707.01005] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information