Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Cornering colored coannihilation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 October 2018
  • Volume 2018, article number 102, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Cornering colored coannihilation
Download PDF
  • Sonia El Hedri1,2 &
  • Maikel de Vries1 
  • 313 Accesses

  • 9 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In thermal dark matter models, allowing the dark matter candidate to coannihilate with another particle can considerably loosen the relic density constraints on the dark matter mass. In particular, introducing a single strongly interacting coannihilation partner in a dark matter model can bring the upper bound on the dark sector energy scale from a few TeV up to about 10 TeV. While these energies are outside the LHC reach, a large part of the parameter space for such coannihilating models can be explored by future hadron colliders. In this context, it is essential to determine whether the current bounds on dark matter simplified models also hold in non-minimal scenarios. In this paper, we study extended models that include multiple coannihilation partners. We show that the relic density bounds on the dark matter mass in these scenarios are stronger than for the minimal models in most of the parameter space and that weakening these bounds requires sizable interactions between the different species of coannihilation partners. Furthermore, we discuss how these new interactions as well as the additional particles in the models can lead to stronger collider bounds, notably in jets plus missing transverse energy searches. This study serves as a vital ingredient towards the determination of the highest possible energy scale for thermal dark matter models.

Article PDF

Download to read the full article text

Similar content being viewed by others

Collider signatures of coannihilating dark matter in light of the B-physics anomalies

Article Open access 11 November 2021

The coannihilation codex

Article Open access 17 December 2015

Heavy long-lived coannihilation partner from inelastic Dark Matter model and its signatures at the LHC

Article Open access 06 April 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  3. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Cohen and J.G. Wacker, Here be dragons: the unexplored continents of the CMSSM, JHEP 09 (2013) 061 [arXiv:1305.2914] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

  6. S. El Hedri, A. Kaminska, M. de Vries and J. Zurita, Simplified phenomenology for colored dark sectors, JHEP 04 (2017) 118 [arXiv:1703.00452] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M.J. Baker et al., The coannihilation codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].

    ADS  Google Scholar 

  8. M. Buschmann et al., Hunting for dark matter coannihilation by mixing dijet resonances and missing transverse energy, JHEP 09 (2016) 033 [arXiv:1605.08056] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].

    Article  Google Scholar 

  10. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Ellis, F. Luo and K.A. Olive, Gluino coannihilation revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of coannihilation with a scalar top partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].

  14. G. Grilli di Cortona, E. Hardy and A.J. Powell, Dirac vs. Majorana gauginos at a 100 TeV collider, JHEP 08 (2016) 014 [arXiv:1606.07090] [INSPIRE].

  15. S.A.R. Ellis and B. Zheng, Reaching for squarks and gauginos at a 100 TeV p-p collider, Phys. Rev. D 92 (2015) 075034 [arXiv:1506.02644] [INSPIRE].

  16. A. Davoli, A. De Simone, T. Jacques and A. Morandini, LHC phenomenology of dark matter with a color-octet partner, JHEP 07 (2018) 054 [arXiv:1803.02861] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Closing up on dark sectors at colliders: from 14 to 100 TeV, Phys. Rev. D 93 (2016) 054030 [arXiv:1509.02904] [INSPIRE].

  18. N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].

  19. T. Golling et al., Physics at a 100 TeV pp collider: beyond the standard model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].

  20. M. Chala et al., Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Duerr et aL., How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].

  22. D. Chialva, P.S.B. Dev and A. Mazumdar, Multiple dark matter scenarios from ubiquitous stringy throats, Phys. Rev. D 87 (2013) 063522 [arXiv:1211.0250] [INSPIRE].

  23. T. Hur, H.-S. Lee and S. Nasri, A supersymmetric U(1)′ model with multiple dark matters, Phys. Rev. D 77 (2008) 015008 [arXiv:0710.2653] [INSPIRE].

  24. M. Baldi, Multiple dark matter as a self-regulating mechanism for dark sector interactions, Annalen Phys. 524 (2012) 602 [arXiv:1204.0514] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. M. Baldi, Cosmological models with multiple dark matter species and long-range scalar interactions, PoS Corfu2012 (2013) 064 [arXiv:1304.5178] [INSPIRE].

  26. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  27. S. Profumo and A. Provenza, Increasing the neutralino relic abundance with slepton coannihilations: Consequences for indirect dark matter detection, JCAP 12 (2006) 019 [hep-ph/0609290] [INSPIRE].

  28. M. Chakraborti, U. Chattopadhyay and S. Poddar, How light a higgsino or a wino dark matter can become in a compressed scenario of MSSM, JHEP 09 (2017) 064 [arXiv:1702.03954] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Davidson et al., Study of dark matter and QCD-charged mediators in the quasidegenerate regime, Phys. Rev. D 96 (2017) 115029 [arXiv:1707.02460] [INSPIRE].

  30. G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

  31. J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

  32. B. Herrmann, M. Klasen and Q. Le Boulc’h, Impact of squark flavour violation on neutralino dark matter, Phys. Rev. D 84 (2011) 095007 [arXiv:1106.6229] [INSPIRE].

  33. N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

  34. A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  35. S. El Hedri and M. de Vries, FeynRules models for colored dark sectors, https://feynrules.irmp.ucl.ac.be/wiki/SimplifiedDM, GitHub repository: https://github.com/MDT-Maikel/FR-CDS.

  36. C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

  37. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  38. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

  39. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. 403 (1931) 257.

    Article  MATH  Google Scholar 

  40. S. El Hedri, A. Kaminska and M. de Vries, A sommerfeld toolbox for colored dark sectors, Eur. Phys. J. C 77 (2017) 622 [arXiv:1612.02825] [INSPIRE].

  41. A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological implications of dark matter bound states, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C.W. Bauer et al., Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [INSPIRE].

  44. E. Ma, M. Raidal and U. Sarkar, Probing the exotic particle content beyond the standard model, Eur. Phys. J. C 8 (1999) 301 [hep-ph/9808484] [INSPIRE].

  45. M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

  47. T. Han, I. Lewis and T. McElmurry, QCD corrections to scalar diquark production at hadron colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. K. Betre, S. El Hedri and D.G.E. Walker, Perturbative unitarity constraints on the NMSSM Higgs sector, Phys. Dark Univ. 19 (2018) 46 [arXiv:1410.1534] [INSPIRE].

    Article  Google Scholar 

  49. A. Schuessler and D. Zeppenfeld, Unitarity constraints on MSSM trilinear couplings, in the proceedings of the 15th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2007), July 26-August 1, Karlsruhe, Germany (2007), arXiv:0710.5175 [INSPIRE].

  50. S. El Hedri, A. Kaminska and M. de Vries, Mathematica notebook for analytic sommerfeld corrections, GitHub repository: https://github.com/MDT-Maikel/Sommerfeld.

  51. ATLAS collaboration, Further searches for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-078 (2016).

  52. CMS collaboration, Search for new physics in final states with jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the α T variable, CMS-PAS-SUS-15-005 (2015).

  53. CMS collaboration, Search for supersymmetry in events with jets and missing transverse momentum in proton-proton collisions at 13 TeV, CMS-PAS-SUS-16-014 (2016).

  54. CMS collaboration, An inclusive search for new phenomena in final states with one or more jets and missing transverse momentum at 13 TeV with the α T variable, CMS-PAS-SUS-16-016 (2016).

  55. CMS collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV, Phys. Lett. B 758 (2016) 152 [arXiv:1602.06581] [INSPIRE].

  56. ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 392 [arXiv:1605.03814].

  57. ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018) 126 [arXiv:1711.03301].

  58. CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].

  59. CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].

  60. CMS collaboration, Search for decays of stopped long-lived particles produced in proton-proton collisions at \( \sqrt{s} = 8 \) TeV, Eur. Phys. J. C 75 (2015) 151 [arXiv:1501.05603] [INSPIRE].

  61. ATLAS collaboration, Search for metastable heavy charged particles with large ionization energy loss in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS experiment, Phys. Rev. D 93 (2016) 112015 [arXiv:1604.04520] [INSPIRE].

  62. ATLAS collaboration, Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 760 (2016) 647 [arXiv:1606.05129] [INSPIRE].

  63. ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].

  64. ATLAS collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004 [arXiv:1504.05162] [INSPIRE].

  65. H. Baer and M. Brhlik, Cosmological relic density from minimal supergravity with implications for collider physics, Phys. Rev. D 53 (1996) 597 [hep-ph/9508321] [INSPIRE].

  66. H. Baer, A. Box, E.-K. Park and X. Tata, Implications of compressed supersymmetry for collider and dark matter searches, JHEP 08 (2007) 060 [arXiv:0707.0618] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].

  68. R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].

  69. Mathusla collaboration, C. Alpigiani, Ultra long-lived particles with MATHUSLA, PoS(EPS-HEP2017)772.

  70. J.P. Chou, D. Curtin and H.J. Lubatti, New detectors to explore the lifetime frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].

  71. J. Liu, Z. Liu and L.-T. Wang, Long-lived particles at the LHC: catching them in time, arXiv:1805.05957 [INSPIRE].

  72. V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for long-lived particles: a compact detector for exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].

  73. T. Alanne et al., Partially composite Higgs models: phenomenology and RG analysis, JHEP 01 (2018) 051 [arXiv:1711.10410] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. R. Balkin, G. Perez and A. Weiler, Little composite dark matter, Eur. Phys. J. C 78 (2018) 104 [arXiv:1707.09980] [INSPIRE].

  75. R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Charged composite scalar dark matter, JHEP 11 (2017) 094 [arXiv:1707.07685] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  76. Y. Wu, T. Ma, B. Zhang and G. Cacciapaglia, Composite dark matter and Higgs, JHEP 11 (2017) 058 [arXiv:1703.06903] [INSPIRE].

    Article  ADS  Google Scholar 

  77. ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].

  78. ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].

  79. ATLAS collaboration, Search for heavy resonances decaying to a photon and a hadronically decaying Z/W/H boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032015 [arXiv:1805.01908] [INSPIRE].

  80. ATLAS collaboration, A search for pair-produced resonances in four-jet final states at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 250 [arXiv:1710.07171] [INSPIRE].

  81. ATLAS collaboration, Search for scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, New J. Phys. 18 (2016) 093016 [arXiv:1605.06035] [INSPIRE].

  82. CMS collaboration, Search for high-mass resonances in \( \mathrm{Z}\left(\mathrm{q}\overline{\mathrm{q}}\right)\gamma \) final state in pp collisions at \( \sqrt{s}=13 \) TeV with 12.9fb −1,CMS-PAS-EXO-16-035 (2016).

  83. CMS collaboration, Search for high-mass resonances in Zγ → e + e − γ/μ + μ − γ final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-034 (2016).

  84. CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-031 (2016).

  85. CMS collaboration, Searches for dijet resonances in pp collisions at \( \sqrt{s}=13 \) TeV using data collected in 2016, CMS-PAS-EXO-16-056 (2016).

  86. CMS collaboration, Search for pair production of second generation leptoquarks at \( \sqrt{s}=13 \) TeV,CMS-PAS-EXO-17-003 (2017).

  87. CMS collaboration, A search for light pair-produced resonances decaying into at least four quarks, CMS-PAS-EXO-17-022 (2017).

  88. CMS collaboration, Search for singly produced third-generation leptoquarks decaying to a τ lepton and a b quark in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-17-029 (2017).

  89. CMS collaboration, Search for high mass resonances in dielectron final state, CMS-PAS-EXO-18-006 (2018).

  90. J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].

  91. C. Arina, Impact of cosmological and astrophysical constraints on dark matter simplified models, arXiv:1805.04290 [INSPIRE].

  92. G. Busoni et al., Making the most of the relic density for dark matter searches at the LHC 14 TeV Run, JCAP 03 (2015) 022 [arXiv:1410.7409] [INSPIRE].

  93. A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches, JHEP 05 (2016) 112 [arXiv:1603.01366] [INSPIRE].

    Article  ADS  Google Scholar 

  94. T. du Pree, K. Hahn, P. Harris and C. Roskas, Cosmological constraints on dark matter models for collider searches, arXiv:1603.08525 [INSPIRE].

  95. T. Jacques et al., Complementarity of DM searches in a consistent simplified model: the case of Z ′, JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].

  96. A. Albert et al., Towards the next generation of simplified Dark Matter models, Phys. Dark Univ. 16 (2017) 49 [arXiv:1607.06680] [INSPIRE].

    Article  Google Scholar 

  97. D. Abercrombie et al., Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].

  98. G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].

  99. S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099, Mainz, Germany

    Sonia El Hedri & Maikel de Vries

  2. NIKHEF, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Sonia El Hedri

Authors
  1. Sonia El Hedri
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Maikel de Vries
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sonia El Hedri.

Additional information

ArXiv ePrint: 1806.03325

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hedri, S., de Vries, M. Cornering colored coannihilation. J. High Energ. Phys. 2018, 102 (2018). https://doi.org/10.1007/JHEP10(2018)102

Download citation

  • Received: 02 July 2018

  • Accepted: 05 October 2018

  • Published: 16 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)102

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenological Models
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature