Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A clockwork solution to the flavor puzzle

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 October 2018
  • Volume 2018, article number 99, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A clockwork solution to the flavor puzzle
Download PDF
  • Rodrigo Alonso1,
  • Adrian Carmona  ORCID: orcid.org/0000-0002-6706-34582,
  • Barry M. Dillon3,
  • Jernej F. Kamenik4,5,
  • Jorge Martin Camalich1,6,7 &
  • …
  • Jure Zupan8 
  • 490 Accesses

  • 6 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We introduce a set of clockwork models of flavor that can naturally explain the large hierarchies of the Standard Model quark masses and mixing angles. Since the clockwork only contains chains of new vector-like fermions without any other dynamical fields, the flavor constraints allow for relatively light new physics scale. For two benchmarks with gear masses just above 1 TeV, allowed by flavor constraints, we discuss the collider searches and the possible ways of reconstructing gear spectra at the LHC. We also examine the similarities and differences with the other common solutions to the SM flavor puzzle, i.e., with the Froggatt-Nielsen models, where we identify a new clockworked version, and with the Randall-Sundrum models.

Article PDF

Download to read the full article text

Similar content being viewed by others

A random clockwork of flavor

Article Open access 28 February 2020

Rephasing invariance and permutation symmetry in flavor physics

Article Open access 04 March 2020

Recent Results on Light Flavor from STAR

Chapter © 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  2. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

  3. S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].

  4. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

  5. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

  6. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

  7. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  8. C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

  9. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

  10. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: the sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

  11. S. Knapen and D.J. Robinson, Disentangling mass and mixing hierarchies, Phys. Rev. Lett. 115 (2015) 161803 [arXiv:1507.00009] [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. Altmannshofer, S. Gori, D.J. Robinson and D. Tuckler, The flavor-locked flavorful two Higgs doublet model, JHEP 03 (2018) 129 [arXiv:1712.01847] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].

  15. G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. N. Craig, I. Garcia Garcia and D. Sutherland, Disassembling the clockwork mechanism, JHEP 10 (2017) 018 [arXiv:1704.07831] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. G.F. Giudice and M. McCullough, Comment on “Disassembling the clockwork mechanism”, arXiv:1705.10162 [INSPIRE].

  18. G.F. Giudice et al., Clockwork/linear dilaton: structure and phenomenology, JHEP 06 (2018) 009 [arXiv:1711.08437] [INSPIRE].

    Article  ADS  Google Scholar 

  19. I. Antoniadis, S. Dimopoulos and A. Giveon, Little string theory at a TeV, JHEP 05 (2001) 055 [hep-th/0103033] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of tev little string theory from holography, Phys. Rev. Lett. 108 (2012) 081602 [arXiv:1102.4043] [INSPIRE].

  21. M. Baryakhtar, Graviton phenomenology of linear dilaton geometries, Phys. Rev. D 85 (2012) 125019 [arXiv:1202.6674] [INSPIRE].

  22. P. Cox and T. Gherghetta, Radion dynamics and phenomenology in the linear dilaton model, JHEP 05 (2012) 149 [arXiv:1203.5870] [INSPIRE].

    Article  ADS  Google Scholar 

  23. O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Berkooz, M. Rozali and N. Seiberg, Matrix description of M-theory on T 4 and T 5, Phys. Lett. B 408 (1997) 105 [hep-th/9704089] [INSPIRE].

  26. N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T 5 and T 5 /ℤ 2, Phys. Lett. B 408 (1997) 98 [hep-th/9705221] [INSPIRE].

  27. A. Kehagias and A. Riotto, Clockwork inflation, Phys. Lett. B 767 (2017) 73 [arXiv:1611.03316] [INSPIRE].

  28. A. Ahmed and B.M. Dillon, Clockwork goldstone bosons, Phys. Rev. D 96 (2017) 115031 [arXiv:1612.04011] [INSPIRE].

  29. R. Coy, M. Frigerio and M. Ibe, Dynamical clockwork axions, JHEP 10 (2017) 002 [arXiv:1706.04529] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. D.K. Hong, D.H. Kim and C.S. Shin, Clockwork graviton contributions to muon g − 2, Phys. Rev. D 97 (2018) 035014 [arXiv:1706.09376] [INSPIRE].

  31. S.C. Park and C.S. Shin, Clockwork seesaw mechanisms, Phys. Lett. B 776 (2018) 222 [arXiv:1707.07364] [INSPIRE].

  32. H.M. Lee, Gauged U (1) clockwork theory, Phys. Lett. B 778 (2018) 79 [arXiv:1708.03564] [INSPIRE].

  33. L.E. Ibáñez and M. Montero, A note on the WGC, effective field theory and clockwork within string theory, JHEP 02 (2018) 057 [arXiv:1709.02392] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Kehagias and A. Riotto, The clockwork supergravity, JHEP 02 (2018) 160 [arXiv:1710.04175] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. A. Ibarra, A. Kushwaha and S.K. Vempati, Clockwork for neutrino masses and lepton flavor violation, Phys. Lett. B 780 (2018) 86 [arXiv:1711.02070] [INSPIRE].

  36. K.M. Patel, Clockwork mechanism for flavor hierarchies, Phys. Rev. D 96 (2017) 115013 [arXiv:1711.05393] [INSPIRE].

  37. K. Choi, S.H. Im and C.S. Shin, General continuum clockwork, JHEP 07 (2018) 113 [arXiv:1711.06228] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. D. Teresi, Clockwork without supersymmetry, Phys. Lett. B 783 (2018) 1 [arXiv:1802.01591] [INSPIRE].

  39. J. Kim and J. Mcdonald, Freeze-in dark matter from a sub-Higgs mass clockwork sector via the Higgs portal, arXiv:1804.02661 [INSPIRE].

  40. F. Niedermann, A. Padilla and P.M. Saffin, Non-linear clockwork gravity, arXiv:1805.03523 [INSPIRE].

  41. P. Agrawal, J. Fan and M. Reece, Clockwork axions in cosmology: is chromonatural inflation chrononatural?, arXiv:1806.09621 [INSPIRE].

  42. A. Goudelis, K.A. Mohan and D. Sengupta, Clockworking FIMPs, arXiv:1807.06642 [INSPIRE].

  43. G. von Gersdorff, Natural fermion hierarchies from random Yukawa couplings, JHEP 09 (2017) 094 [arXiv:1705.05430] [INSPIRE].

    Article  Google Scholar 

  44. B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Alonso et al., Gauged lepton flavour, JHEP 12 (2016) 119 [arXiv:1609.05902] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. L. Calibbi et al., Minimal axion model from flavor, Phys. Rev. D 95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].

  47. Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096 [arXiv:1612.05492] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. O. Davidi et al., The hierarchion, a relaxion addressing the Standard Model’s hierarchies, JHEP 08 (2018) 153 [arXiv:1806.08791] [INSPIRE].

    Article  ADS  Google Scholar 

  49. I. Baldes, T. Konstandin and G. Servant, Flavor cosmology: dynamical Yukawas in the Froggatt-Nielsen mechanism, JHEP 12 (2016) 073 [arXiv:1608.03254] [INSPIRE].

    Article  ADS  Google Scholar 

  50. L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal constraints on low-energy flavour models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].

    Article  ADS  Google Scholar 

  51. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

  52. K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [INSPIRE].

  53. C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].

  54. M. Blanke et al., ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D.J. Gross and F. Wilczek, Asymptotically free gauge theories — I, Phys. Rev. D 8 (1973) 3633 [INSPIRE].

  56. K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

  57. Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  58. W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].

    Article  ADS  Google Scholar 

  59. M.-L. Xiao and J.-H. Yu, Stabilizing electroweak vacuum in a vectorlike fermion model, Phys. Rev. D 90 (2014) 014007 [arXiv:1404.0681] [INSPIRE].

  60. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  61. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  62. F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].

  63. K. Ishiwata, Z. Ligeti and M.B. Wise, New vector-like fermions and flavor physics, JHEP 10 (2015) 027 [arXiv:1506.03484] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C. Bobeth, A.J. Buras, A. Celis and M. Jung, Patterns of flavour violation in models with vector-like quarks, JHEP 04 (2017) 079 [arXiv:1609.04783] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Davidson, G. Isidori and S. Uhlig, Solving the flavour problem with hierarchical fermion wave functions, Phys. Lett. B 663 (2008) 73 [arXiv:0711.3376] [INSPIRE].

  66. G. Perez, private communication.

  67. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

  69. R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].

    Article  ADS  Google Scholar 

  70. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    Article  ADS  Google Scholar 

  72. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

  74. C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, JHEP 07 (2017) 124 [arXiv:1703.04753] [INSPIRE].

  75. F.J. Gilman and M.B. Wise, K0 anti-K0 mixing in the six quark model, Phys. Rev. D 27 (1983) 1128 [INSPIRE].

  76. M. Ciuchini et al., Next-to-leading order QCD corrections to ΔF = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].

  77. A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].

  78. A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].

  79. SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  80. A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M. González-Alonso and J. Martin Camalich, Global effective-field-theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [arXiv:1605.07114] [INSPIRE].

    Article  ADS  Google Scholar 

  83. C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline{B}\to {X}_s\ell +\ell - \) and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].

  84. J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K\to \pi \nu \overline{\nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].

  85. LHCb collaboration, Measurement of the \( {\overline{B}}_s^0\to {\mu}^{+}{\mu}^{-} \) branching fraction and search for B 0 → \( \mu \) + \( \mu \) − decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].

  86. CMS collaboration, Measurement of the B s → μ + μ − branching fraction and search for B 0 → μ + μ − with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].

  87. ATLAS collaboration, Study of the rare decays of B 0 s and B 0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector, Eur. Phys. J. C 76 (2016) 513 [arXiv:1604.04263] [INSPIRE].

  88. C. Bobeth et al., B s,d → l + l − in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].

  89. E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].

  90. A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].

  91. G. Eilam, J.L. Hewett and A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models, Phys. Rev. D 44 (1991) 1473 [Erratum ibid. D 59 (1999) 039901] [INSPIRE].

  92. B. Mele, S. Petrarca and A. Soddu, A new evaluation of the t → cH decay width in the standard model, Phys. Lett. B 435 (1998) 401 [hep-ph/9805498] [INSPIRE].

  93. J.A. Aguilar-Saavedra and B.M. Nobre, Rare top decays t → cγ, t → cg and CKM unitarity, Phys. Lett. B 553 (2003) 251 [hep-ph/0210360] [INSPIRE].

  94. G. Burdman, E. Golowich, J.L. Hewett and S. Pakvasa, Rare charm decays in the standard model and beyond, Phys. Rev. D 66 (2002) 014009 [hep-ph/0112235] [INSPIRE].

  95. CMS collaboration, Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2017) 003 [arXiv:1702.01404] [INSPIRE].

  96. G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].

  97. LHCb collaboration, Search for the rare decay D 0 → μ + μ −, Phys. Lett. B 725 (2013) 15 [arXiv:1305.5059] [INSPIRE].

  98. S. Fajfer and N. Košnik, Prospects of discovering new physics in rare charm decays, Eur. Phys. J. C 75 (2015) 567 [arXiv:1510.00965] [INSPIRE].

  99. LHCb collaboration, Test of lepton universality using B + → K + ℓ + ℓ − decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].

  100. LHCb collaboration, Test of lepton universality with B 0 → K ∗0 ℓ + ℓ − decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  101. L.-S. Geng et al., Towards the discovery of new physics with lepton-universality ratios of b→sℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].

  102. W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting hints for lepton flavor universality violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].

  103. B. Capdevila et al., Patterns of new physics in b → sℓ + ℓ − transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].

  104. M. Ciuchini et al., On flavourful easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].

  105. G. D’Amico et al., Flavour anomalies after the R K∗ measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].

  106. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

  107. UTfit collaboration, M. Bona et al., Neutral charm mixing results from the Utfit collaboration, PoS(CKM2016)143.

  108. C. Alpigiani et al., Unitarity triangle analysis in the standard model and beyond, talk given at the 5th Large Hadron Collider Physics Conference (LHCP2017), May 15-20, Shanghai (2017), arXiv:1710.09644 [INSPIRE].

  109. SWME collaboration, B.J. Choi et al., Kaon BSM B-parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD, Phys. Rev. D 93 (2016) 014511 [arXiv:1509.00592] [INSPIRE].

  110. RBC/UKQCD collaboration, N. Garron, R.J. Hudspith and A.T. Lytle, Neutral kaon mixing beyond the standard model with n f = 2 + 1 chiral fermions part 1: bare matrix elements and physical results, JHEP 11 (2016) 001 [arXiv:1609.03334] [INSPIRE].

  111. ETM collaboration, N. Carrasco et al., ΔS = 2 and ΔC = 2 bag parameters in the standard model and beyond from N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 92 (2015) 034516 [arXiv:1505.06639] [INSPIRE].

  112. J.B. Bronzan, Parametrization of SU(3), Phys. Rev. D 38 (1988) 1994 [INSPIRE].

  113. M. Czakon et al., Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].

    Article  ADS  Google Scholar 

  114. D. Dercks et al., CheckMATE 2: from the model to the limit, Comput. Phys. Commun. 221 (2017) 383 [arXiv:1611.09856] [INSPIRE].

    Article  ADS  Google Scholar 

  115. ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into high-p T W bosons and top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 08 (2018) 048 [arXiv:1806.01762] [INSPIRE].

  116. ATLAS collaboration, Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP 07 (2018) 089 [arXiv:1803.09678] [INSPIRE].

  117. A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  118. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  119. M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].

    Article  ADS  Google Scholar 

  120. CMS collaboration, CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].

  121. CMS collaboration, Searches for supersymmetry using the M T 2 variable in hadronic events produced in pp collisions at 8 TeV, JHEP 05 (2015) 078 [arXiv:1502.04358] [INSPIRE].

  122. CMS collaboration, Search for new phenomena with the MT2 variable in the all-hadronic final state produced in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1705.04650 [CMS-SUS-16-036].

  123. T. Sjöstrand, The Lund Monte Carlo for e + e − jet physics, Comput. Phys. Commun. 28 (1983) 229 [INSPIRE].

  124. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

  125. A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

  126. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  127. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

  128. A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

  129. I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  130. I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].

  131. R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev. D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].

  132. A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP 08 (2014) 053 [arXiv:1308.4771] [INSPIRE].

    Article  ADS  Google Scholar 

  133. A. Azatov and A. Paul, Probing Higgs couplings with high p T Higgs production, JHEP 01 (2014) 014 [arXiv:1309.5273] [INSPIRE].

    Article  ADS  Google Scholar 

  134. C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].

    Article  ADS  Google Scholar 

  135. R.A. Bertlmann, Anomalies in quantum field theory, Oxford Science Publications, Oxford U.K. (1996).

  136. T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \( {k}_L\to \mu \overline{\mu},\ {K}^{+}\to \pi +\nu \overline{\nu} \) and K0 → K¯0, Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Theoretical Physics Department, CERN, 1 Esplanade des Particules, 1211, Geneva 23, Switzerland

    Rodrigo Alonso & Jorge Martin Camalich

  2. PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099, Mainz, Germany

    Adrian Carmona

  3. Centre for Mathematical Sciences, Plymouth University, PL4-8AA, Plymouth, U.K.

    Barry M. Dillon

  4. Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia

    Jernej F. Kamenik

  5. Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia

    Jernej F. Kamenik

  6. Instituto de Astrofísica de Canarias, C/Víıa Láctea, s/n E38205, La Laguna Tenerife, España

    Jorge Martin Camalich

  7. Universidad de La Laguna, Departamento de Astrofísica, La Laguna, Tenerife, Spain

    Jorge Martin Camalich

  8. Department of Physics, University of Cincinnati, Cincinnati, Ohio, 45221, U.S.A.

    Jure Zupan

Authors
  1. Rodrigo Alonso
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Adrian Carmona
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Barry M. Dillon
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jernej F. Kamenik
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Jorge Martin Camalich
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jure Zupan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Adrian Carmona.

Additional information

ArXiv ePrint: 1807.09792

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, R., Carmona, A., Dillon, B.M. et al. A clockwork solution to the flavor puzzle. J. High Energ. Phys. 2018, 99 (2018). https://doi.org/10.1007/JHEP10(2018)099

Download citation

  • Received: 17 August 2018

  • Accepted: 04 October 2018

  • Published: 16 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)099

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Heavy Quark Physics
  • Quark Masses and SM Parameters
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature