Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Higgs relaxation after inflation
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Critical point Higgs inflation in the Palatini formulation

08 April 2021

Vera-Maria Enckell, Sami Nurmi, … Eemeli Tomberg

Unified emergence of energy scales and cosmic inflation

03 August 2021

Jisuke Kubo, Jeffrey Kuntz, … Andreas Trautner

Fast-rolling relaxion

25 November 2019

Masahiro Ibe, Yutaro Shoji & Motoo Suzuki

Relaxion fluctuations (self-stopping relaxion) and overview of relaxion stopping mechanisms

18 May 2020

Nayara Fonseca, Enrico Morgante, … Géraldine Servant

Possible discrepancies between cosmological and electroweak observables in Higgs Inflation

12 November 2021

Jamerson G. Rodrigues, Micol Benetti & Jailson S. Alcaniz

Higgs-like spectator field as the origin of structure

15 July 2021

Alexandros Karam, Tommi Markkanen, … Arttu Rajantie

Gravitational waves from an inflation triggered first-order phase transition

09 June 2022

Haipeng An, Kun-Feng Lyu, … Siyi Zhou

Jump starting the dark sector with a phase transition

17 January 2023

Michele Redi & Andrea Tesi

The Hierarchy Problem and the Cosmological Constant Problem Revisited

17 May 2019

Fred Jegerlehner

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 03 October 2018

Higgs relaxation after inflation

  • Nayara Fonseca1,
  • Enrico Morgante1 &
  • Géraldine Servant1,2 

Journal of High Energy Physics volume 2018, Article number: 20 (2018) Cite this article

  • 330 Accesses

  • 35 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show that the mechanism of cosmological relaxation of the electroweak scale can take place independently of the inflation mechanism, thus relieving burdens from the original relaxion proposal. What eventually stops the (fast-rolling) relaxion field during its cosmological evolution is the production of particles whose mass is controlled by the Higgs vacuum expectation value. We first show that Higgs particle production does not work for that purpose as the Higgs field does not track the minimum of its potential in the regime where Higgs particles get efficiently produced through their coupling to the relaxion. We then focus on gauge boson production. We provide a detailed analysis of the scanning and stopping mechanism and determine the parameter space for which the relaxion mechanism can take place after inflation, while being compatible with cosmological constraints, such as the relaxion dark matter overabundance and Big Bang Nucleosynthesis. We find that the cutoff scale can be as high as two hundreds of TeV. In this approach, the relaxion sector is responsible for reheating the visible sector. The stopping barriers of the periodic potential are large and Higgs-independent, facilitating model-building. The allowed relaxion mass ranges from 200 MeV up to the weak scale. In this scenario, the relaxion field excursion is subplanckian, and is thus many orders of magnitude smaller than in the original relaxion proposal.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolàs and G. Servant, Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R.S. Gupta, Z. Komargodski, G. Perez and L. Ubaldi, Is the relaxion an axion?, JHEP 02 (2016) 166 [arXiv:1509.00047] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Abel and R.J. Stewart, Shift-symmetries at higher order, JHEP 02 (2016) 182 [arXiv:1511.02880] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. Choi and H. Kim, Aligned natural inflation with modulations, Phys. Lett. B 759 (2016) 520 [arXiv:1511.07201] [INSPIRE].

    Article  ADS  Google Scholar 

  6. L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. A. Hebecker, F. Rompineve and A. Westphal, Axion monodromy and the weak gravity conjecture, JHEP 04 (2016) 157 [arXiv:1512.03768] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  8. L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway relaxion monodromy, JHEP 02 (2018) 124 [arXiv:1610.05320] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. Hardy, Electroweak relaxation from finite temperature, JHEP 11 (2015) 077 [arXiv:1507.07525] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP 12 (2016) 101 [arXiv:1607.01786] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S.P. Patil and P. Schwaller, Relaxing the electroweak scale: the role of broken dS symmetry, JHEP 02 (2016) 077 [arXiv:1507.08649] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Jaeckel, V.M. Mehta and L.T. Witkowski, Musings on cosmological relaxation and the hierarchy problem, Phys. Rev. D 93 (2016) 063522 [arXiv:1508.03321] [INSPIRE].

    ADS  Google Scholar 

  13. L. Marzola and M. Raidal, Natural relaxation, Mod. Phys. Lett. A 31 (2016) 1650215 [arXiv:1510.00710] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. S. Di Chiara, K. Kannike, L. Marzola, A. Racioppi, M. Raidal and C. Spethmann, Relaxion cosmology and the price of fine-tuning, Phys. Rev. D 93 (2016) 103527 [arXiv:1511.02858] [INSPIRE].

    ADS  Google Scholar 

  15. J.L. Evans, T. Gherghetta, N. Nagata and M. Peloso, Low-scale D-term inflation and the relaxion mechanism, Phys. Rev. D 95 (2017) 115027 [arXiv:1704.03695] [INSPIRE].

    ADS  Google Scholar 

  16. W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of relaxed inflation, JHEP 02 (2018) 084 [arXiv:1706.03072] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev. D 95 (2017) 075008 [arXiv:1611.08569] [INSPIRE].

    ADS  Google Scholar 

  18. B. Batell, G.F. Giudice and M. McCullough, Natural heavy supersymmetry, JHEP 12 (2015) 162 [arXiv:1509.00834] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. J.L. Evans, T. Gherghetta, N. Nagata and Z. Thomas, Naturalizing supersymmetry with a two-field relaxion mechanism, JHEP 09 (2016) 150 [arXiv:1602.04812] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. B. Batell, M.A. Fedderke and L.-T. Wang, Relaxation of the composite Higgs little hierarchy, JHEP 12 (2017) 139 [arXiv:1705.09666] [INSPIRE].

    Article  ADS  Google Scholar 

  21. O. Antipin and M. Redi, The half-composite two Higgs doublet model and the relaxion, JHEP 12 (2015) 031 [arXiv:1508.01112] [INSPIRE].

    ADS  Google Scholar 

  22. A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev. D 95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].

    ADS  Google Scholar 

  23. Z. Lalak and A. Markiewicz, Dynamical relaxation in 2HDM models, J. Phys. G 45 (2018) 035002 [arXiv:1612.09128] [INSPIRE].

    Article  ADS  Google Scholar 

  24. O. Matsedonskyi, Mirror cosmological relaxation of the electroweak scale, JHEP 01 (2016) 063 [arXiv:1509.03583] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. O. Davidi, R.S. Gupta, G. Perez, D. Redigolo and A. Shalit, The Nelson-Barr relaxion, arXiv:1711.00858 [INSPIRE].

  26. K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. N. Fonseca, B. Von Harling, L. De Lima and C.S. Machado, A warped relaxion, JHEP 07 (2018) 033 [arXiv:1712.07635] [INSPIRE].

    Article  ADS  Google Scholar 

  30. N. Fonseca, L. de Lima, C.S. Machado and R.D. Matheus, Large field excursions from a few site relaxion model, Phys. Rev. D 94 (2016) 015010 [arXiv:1601.07183] [INSPIRE].

    ADS  Google Scholar 

  31. T. Kobayashi, O. Seto, T. Shimomura and Y. Urakawa, Relaxion window, Mod. Phys. Lett. A 32 (2017) 1750142 [arXiv:1605.06908] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. K. Choi and S.H. Im, Constraints on relaxion windows, JHEP 12 (2016) 093 [arXiv:1610.00680] [INSPIRE].

    Article  ADS  Google Scholar 

  33. T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta and G. Perez, Phenomenology of relaxion-Higgs mixing, JHEP 06 (2017) 050 [arXiv:1610.02025] [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Beauchesne, E. Bertuzzo and G. Grilli di Cortona, Constraints on the relaxion mechanism with strongly interacting vector-fermions, JHEP 08 (2017) 093 [arXiv:1705.06325] [INSPIRE].

    Article  ADS  Google Scholar 

  35. F.P. Huang, Y. Cai, H. Li and X. Zhang, A possible interpretation of the Higgs mass by the cosmological attractive relaxion, Chin. Phys. C 40 (2016) 113103 [arXiv:1605.03120] [INSPIRE].

    Article  ADS  Google Scholar 

  36. O. Matsedonskyi and M. Montull, Light Higgs boson from a pole attractor, Phys. Rev. D 98 (2018) 015026 [arXiv:1709.09090] [INSPIRE].

    ADS  Google Scholar 

  37. A. Nelson and C. Prescod-WEinstein, Relaxion: a landscape without anthropics, Phys. Rev. D 96 (2017) 113007 [arXiv:1708.00010] [INSPIRE].

    ADS  Google Scholar 

  38. K.S. Jeong and C.S. Shin, Peccei-Quinn relaxion, JHEP 01 (2018) 121 [arXiv:1709.10025] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. T. You, A dynamical weak scale from inflation, JCAP 09 (2017) 019 [arXiv:1701.09167] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Son, F. Ye and T. You, Leptogenesis in cosmological relaxation with particle production, arXiv:1804.06599 [INSPIRE].

  41. A. Kusenko, K. Schmitz and T.T. Yanagida, Leptogenesis via axion oscillations after inflation, Phys. Rev. Lett. 115 (2015) 011302 [arXiv:1412.2043] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, Baryon asymmetry and gravitational waves from pseudoscalar inflation, JCAP 12 (2017) 011 [arXiv:1707.07943] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Kofman, A.D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, Beauty is attractive: moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030 [hep-th/0403001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].

    ADS  Google Scholar 

  45. L. Pearce, M. Peloso and L. Sorbo, The phenomenology of trapped inflation, JCAP 11 (2016) 058 [arXiv:1603.08021] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].

    ADS  Google Scholar 

  47. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].

  48. R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  49. R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].

    ADS  Google Scholar 

  50. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  51. G. Cacciapaglia and F. Sannino, Fundamental composite (Goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. B. Gripaios, M. Nardecchia and T. You, On the structure of anomalous composite Higgs models, Eur. Phys. J. C 77 (2017) 28 [arXiv:1605.09647] [INSPIRE].

    Article  ADS  Google Scholar 

  53. E. Molinaro, F. Sannino, A.E. Thomsen and N. Vignaroli, Uncovering new strong dynamics via topological interactions at the 100 TeV collider, Phys. Rev. D 96 (2017) 075040 [arXiv:1706.04037] [INSPIRE].

    ADS  Google Scholar 

  54. M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. E. Bertuzzo, N. Fonseca, L. de Lima and E. Morgante, work in progress.

  56. A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  57. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. J.R. Espinosa, M. Quirós and F. Zwirner, On the nature of the electroweak phase transition, Phys. Lett. B 314 (1993) 206 [hep-ph/9212248] [INSPIRE].

  59. M. Bauer, M. Neubert and A. Thamm, Collider probes of axion-like particles, JHEP 12 (2017) 044 [arXiv:1708.00443] [INSPIRE].

    Article  ADS  Google Scholar 

  60. N. Craig, A. Hook and S. Kasko, The photophobic ALP, JHEP 09 (2018) 028 [arXiv:1805.06538] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M.L. Bellac, Thermal field theory, Cambridge University Press, Cambridge, U.K., (2011) [INSPIRE].

    Google Scholar 

  62. Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  63. CMS collaboration, Search for high-mass Zγ resonances in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-17-005, CERN, Geneva, Switzerland, (2017).

  64. I. Brivio et al., ALPs effective field theory and collider signatures, Eur. Phys. J. C 77 (2017) 572 [arXiv:1701.05379] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

    Article  ADS  Google Scholar 

  66. F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  68. D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, JCAP 02 (2012) 032 [arXiv:1110.2895] [INSPIRE].

    Article  ADS  Google Scholar 

  69. R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].

    ADS  Google Scholar 

  71. M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].

  72. G. Raffelt and A. Weiss, Red giant bound on the axion-electron coupling revisited, Phys. Rev. D 51 (1995) 1495 [hep-ph/9410205] [INSPIRE].

  73. G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0611350] [INSPIRE].

  74. S. Enomoto, S. Iida, N. Maekawa and T. Matsuda, Beauty is more attractive: particle production and moduli trapping with higher dimensional interaction, JHEP 01 (2014) 141 [arXiv:1310.4751] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. DESY, Notkestrasse 85, 22607, Hamburg, Germany

    Nayara Fonseca, Enrico Morgante & Géraldine Servant

  2. II. Institute of Theoretical Physics, University of Hamburg, 22761, Hamburg, Germany

    Géraldine Servant

Authors
  1. Nayara Fonseca
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Enrico Morgante
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Géraldine Servant
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Enrico Morgante.

Additional information

ArXiv ePrint: 1805.04543

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fonseca, N., Morgante, E. & Servant, G. Higgs relaxation after inflation. J. High Energ. Phys. 2018, 20 (2018). https://doi.org/10.1007/JHEP10(2018)020

Download citation

  • Received: 12 July 2018

  • Accepted: 25 September 2018

  • Published: 03 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)020

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.