Advertisement

Journal of High Energy Physics

, 2017:216 | Cite as

Connecting the ambitwistor and the sectorized heterotic strings

  • Thales Azevedo
  • Renann Lipinski Jusinskas
Open Access
Regular Article - Theoretical Physics

Abstract

The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an infinite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit → ∞, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner’s RNS description.

Keywords

Supergravity Models Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Gomez and E.Y. Yuan, N-point tree-level scattering amplitude in the new Berkovits’ string, JHEP 04 (2014) 046 [arXiv:1312.5485] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP 06 (2015) 206 [arXiv:1505.05122] [INSPIRE].
  6. [6]
    O. Chandía and B.C. Vallilo, On-shell type-II supergravity from the ambitwistor pure spinor string, Class. Quant. Grav. 33 (2016) 185003 [arXiv:1511.03329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R.L. Jusinskas, Notes on the ambitwistor pure spinor string, JHEP 05 (2016) 116 [arXiv:1604.02915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    T. Azevedo and R.L. Jusinskas, Background constraints in the infinite tension limit of the heterotic string, JHEP 08 (2016) 133 [arXiv:1607.06805] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].
  11. [11]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    Y.-t. Huang, W. Siegel and E.Y. Yuan, Factorization of chiral string amplitudes, JHEP 09 (2016) 101 [arXiv:1603.02588] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    T. Azevedo and O.T. Engelund, Ambitwistor formulations of R 2 gravity and (DF)2 gauge theories, arXiv:1707.02192 [INSPIRE].
  16. [16]
    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. B 156 (1985) 315.ADSCrossRefGoogle Scholar
  17. [17]
    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Berkovits and O. Chandía, Massive superstring vertex operator in D = 10 superspace, JHEP 08 (2002) 040 [hep-th/0204121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R.L. Jusinskas, Spectrum generating algebra for the pure spinor superstring, JHEP 10 (2014) 22 [arXiv:1406.1902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    L. Brink, M.B. Green and J.H. Schwarz, Ten-dimensional supersymmetric Yang-Mills theory with SO(8)-covariant light cone superfields, Nucl. Phys. B 223 (1983) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quantization of the null string and absence of critical dimensions, Phys. Lett. B 182 (1986) 326 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R.L. Jusinskas, On the field-antifield (a)symmetry of the pure spinor superstring, JHEP 12 (2015) 136 [arXiv:1510.05268] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    S. Hwang, R. Marnelius and P. Saltsidis, A general BRST approach to string theories with zeta function regularizations, J. Math. Phys. 40 (1999) 4639 [hep-th/9804003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled α -geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. de Roo, The R 2 action in D = 10 conformal supergravity, Nucl. Phys. B 372 (1992) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.Institute of Physics AS CRPragueCzech Republic

Personalised recommendations