Skip to main content

Are tiny gauge couplings out of the Swampland?

A preprint version of the article is available at arXiv.

Abstract

There is significant evidence suggesting that continuous global symmetries are always gauged in quantum gravity. However, very weakly gauged symmetries seem global to an effective field theory expansion in powers of Newton’s constant. We show that, at least for Einsteinian quantum gravity on AdS, such extremely weak gaugings are indeed in the Swampland: consistency with AdS black hole thermodynamics requires the bulk gauge coupling g 2 not to vanish faster than ∼ exp(− d−1 /G), where is the AdS d+1 radius and G is Newton’s constant as we take the G → 0 limit. This translates to a constraint in the dual large N CFT, namely, that the two-point function coefficient of the current C J cannot grow faster than exp(N 2) in the large N limit. We also recover a previously known logarithmic relationship between the cutoff of the effective field theory in AdS, Planck’s mass, and the AdS radius.

References

  1. C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].

  2. H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. T. Rudelius, On the possibility of large axion moduli spaces, JCAP 04 (2015) 049 [arXiv:1409.5793] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, JHEP 04 (2016) 017 [arXiv:1504.00659] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, JHEP 02 (2016) 128 [arXiv:1504.03566] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP 10 (2015) 188 [arXiv:1508.00009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. K. Kooner, S. Parameswaran and I. Zavala, Warping the weak gravity conjecture, Phys. Lett. B 759 (2016) 402 [arXiv:1509.07049] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP 10 (2016) 159 [arXiv:1606.08438] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. A. Hebecker, P. Mangat, S. Theisen and L.T. Witkowski, Can gravitational instantons really constrain axion inflation?, JHEP 02 (2017) 097 [arXiv:1607.06814] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev. D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].

    ADS  Google Scholar 

  23. A. Herraez and L.E. Ibáñez, An axion-induced SM/MSSM Higgs landscape and the weak gravity conjecture, JHEP 02 (2017) 109 [arXiv:1610.08836] [INSPIRE].

    ADS  Article  Google Scholar 

  24. H. Ooguri and C. Vafa, Non-supersymmetric AdS and the swampland, arXiv:1610.01533 [INSPIRE].

  25. W. Cottrell, G. Shiu and P. Soler, Weak gravity conjecture and extremal black holes, PoS(CORFU2016)130 [arXiv:1611.06270] [INSPIRE].

  26. A. Hebecker, P. Henkenjohann and L.T. Witkowski, What is the magnetic weak gravity conjecture for axions?, Fortsch. Phys. 65 (2017) 1700011 [arXiv:1701.06553] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. E. Palti, The weak gravity conjecture and scalar fields, JHEP 08 (2017) 034 [arXiv:1705.04328] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. A. Hebecker and P. Soler, The weak gravity conjecture and the axionic black hole paradox, JHEP 09 (2017) 036 [arXiv:1702.06130] [INSPIRE].

    ADS  Article  Google Scholar 

  29. Y. Nakayama and Y. Nomura, Weak gravity conjecture in the AdS/CFT correspondence, Phys. Rev. D 92 (2015) 126006 [arXiv:1509.01647] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP 01 (2017) 088 [arXiv:1610.00010] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. M. Montero, A.M. Uranga and I. Valenzuela, A Chern-Simons pandemic, JHEP 07 (2017) 123 [arXiv:1702.06147] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  36. L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].

  37. T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

    ADS  Article  Google Scholar 

  38. C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The N = 2 superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].

    ADS  Article  Google Scholar 

  39. D. Simmons-Duffin, The conformal bootstrap, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder CO U.S.A., 1–26 June 2015, pg. 1 [arXiv:1602.07982] [INSPIRE].

  40. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language for AdS/CFT correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    ADS  Article  Google Scholar 

  44. H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. W. Mueck and K.S. Viswanathan, The graviton in the AdS-CFT correspondence: solution via the Dirichlet boundary value problem, hep-th/9810151 [INSPIRE].

  46. A. Polishchuk, Massive symmetric tensor field on AdS, JHEP 07 (1999) 007 [hep-th/9905048] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. E. Barnes, E. Gorbatov, K.A. Intriligator and J. Wright, Current correlators and AdS/CFT geometry, Nucl. Phys. B 732 (2006) 89 [hep-th/0507146] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes τ RR , Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  50. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. S. Bhattacharyya, S. Minwalla and K. Papadodimas, Small hairy black holes in AdS 5 × S 5, JHEP 11 (2011) 035 [arXiv:1005.1287] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  53. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

    ADS  Article  Google Scholar 

  54. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, hep-th/0009126 [INSPIRE].

  56. R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  58. R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Montero.

Additional information

ArXiv ePrint: 1708.02249

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montero, M. Are tiny gauge couplings out of the Swampland?. J. High Energ. Phys. 2017, 208 (2017). https://doi.org/10.1007/JHEP10(2017)208

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2017)208

Keywords

  • AdS-CFT Correspondence
  • Gauge Symmetry
  • Global Symmetries