Advertisement

Journal of High Energy Physics

, 2017:204 | Cite as

Small Fermi surfaces and strong correlation effects in Dirac materials with holography

  • Yunseok Seo
  • Geunho Song
  • Chanyong Park
  • Sang-Jin SinEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.

Keywords

Holography and condensed matter physics (AdS/CMT) Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Mott and R. Peierls, Discussion of the paper by de boer and verwey, Proc. Phys. Soc. 49 (1937) 72.ADSCrossRefGoogle Scholar
  2. [2]
    S. Sachdev, Quantum Phase Transitions, second edition, Cambridge University Press, (2011).Google Scholar
  3. [3]
    J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, (2015).Google Scholar
  4. [4]
    E. Oh and S.-J. Sin, Non-spherical collapse in AdS and Early Thermalization in RHIC, Phys. Lett. B 726 (2013) 456 [arXiv:1302.1277] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.-J. Sin, Physical mechanism of AdS instability and universality of holographic thermalization, J. Korean Phys. Soc. 66 (2015) 151 [arXiv:1310.7179] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.A. Hartnoll, P.K. Kovtun, M. Müller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Lucas, J. Crossno, K.C. Fong, P. Kim and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene, Phys. Rev. B 93 (2016) 075426 [arXiv:1510.01738] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Crossno et al., Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene, Science 351 (2016) 1058 [arXiv:1509.04713].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Seo, G. Song, P. Kim, S. Sachdev and S.-J. Sin, Holography of the Dirac Fluid in Graphene with two currents, Phys. Rev. Lett. 118 (2017) 036601 [arXiv:1609.03582] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.Z. Hasan and C.L. Kane, Topological Insulators, Rev. Mod. Phys. 82 (2010) 3045 [arXiv:1002.3895] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    X.L. Qi and S.C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83 (2011) 1057 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai and Z. Fang, Quantized anomalous hall effect in magnetic topological insulators, Science 329 (2010) 61.ADSCrossRefGoogle Scholar
  16. [16]
    L. Fu and C.L. Kane, Probing Neutral Majorana Fermion Edge Modes with Charge Transport, Phys. Rev. Lett. 102 (2009) 216403 [arXiv:0903.2427] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X.-L. Qi, T. Hughes and S.-C. Zhang, Topological Field Theory of Time-Reversal Invariant Insulators, Phys. Rev. B 78 (2008) 195424 [arXiv:0802.3537] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Bergmann, Weak anti-localization — an experimental proof for the destructive interference of rotated spin 12, Solid State Commun. 42 (1982) 815.ADSCrossRefGoogle Scholar
  19. [19]
    M. Liu et al., Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator, Phys. Rev. Lett. 108 (2012) 036805.ADSCrossRefGoogle Scholar
  20. [20]
    D. Zhang et al., Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator, Phys. Rev. B 86 (2012) 205127.ADSCrossRefGoogle Scholar
  21. [21]
    L. Bao et al., Quantum corrections crossover and ferromagnetism in magnetic topological insulators, Sci. Rep. 3 (2013) 2391.CrossRefGoogle Scholar
  22. [22]
    S. Hikami, A.I. Larkin and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63 (1980) 707.ADSCrossRefGoogle Scholar
  23. [23]
    H.-Z. Lu, J. Shi and S.-Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett. 107 (2011) 076801.ADSCrossRefGoogle Scholar
  24. [24]
    M. Lang et al., Competing weak localization and weak antilocalization in ultrathin topological insulators, Nano Lett. 13 (2012) 48.ADSCrossRefGoogle Scholar
  25. [25]
    E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando and B. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene, Phys. Rev. Lett. 97 (2006) 146805.ADSCrossRefGoogle Scholar
  26. [26]
    F. Tikhonenko, A. Kozikov, A. Savchenko and R. Gorbachev, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett. 103 (2009) 226801.ADSCrossRefGoogle Scholar
  27. [27]
    Y. Seo, G. Song and S.-J. Sin, Strong Correlation Effects on Surfaces of Topological Insulators via Holography, Phys. Rev. B 96 (2017) 041104 [arXiv:1703.07361] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Witten, Three Lectures On Topological Phases Of Matter, Riv. Nuovo Cim. 39 (2016) 313 [arXiv:1510.07698] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y. Seo, K.-Y. Kim, K.K. Kim and S.-J. Sin, Character of matter in holography: Spin-orbit interaction, Phys. Lett. B 759 (2016) 104 [arXiv:1512.08916] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography, JHEP 08 (2015) 124 [arXiv:1502.03789] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Blake and A. Donos, Quantum Critical Transport and the Hall Angle, Phys. Rev. Lett. 114 (2015) 021601 [arXiv:1406.1659] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect, JHEP 07 (2015) 027 [arXiv:1502.05386] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    F. Ghahari, Enhanced thermoelectric power in graphene: Violation of the mott relation by inelastic scattering, Phys. Rev. Lett. 116 (2016) 136802.ADSCrossRefGoogle Scholar
  38. [38]
    Y. Wang, L. Li and N. Ong, Nernst effect in high-t c superconductors, Phys. Rev. B 73 (2006) 024510.ADSCrossRefGoogle Scholar
  39. [39]
    P.W. Anderson, Two new vortex liquids, Nature Phys. 3 (2007) 160.ADSCrossRefGoogle Scholar
  40. [40]
    K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197 [cond-mat/0509330] [INSPIRE].
  41. [41]
    K. Nomura and A. MacDonald, Quantum transport of massless Dirac fermions, Phys. Rev. Lett. 98 (2007) 076602.ADSCrossRefGoogle Scholar
  42. [42]
    N.M.R. Peres, Phenomenological study of the electronic transport coefficients of graphene, Phys. Rev. B 76 (2007) 073412.ADSCrossRefGoogle Scholar
  43. [43]
    L.D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz and J. Sykes, Electrodynamics of continuous media, volume 8, Elsevier, (2013).Google Scholar
  44. [44]
    A. Nersesyan and G. Vachnadze, Low-temperature thermodynamics of the two-dimensional orbital antiferromagnet, J. Low. Temp. Phys. 77 (1989) 293.ADSCrossRefGoogle Scholar
  45. [45]
    Y. Kopelevich, P. Esquinazi, J.H.S. Torres and S. Moehlecke, Ferromagnetic- and superconducting-like behavior of graphite, J. Low Temp. Phys. 119 (2000) 691 [cond-mat/9912413].
  46. [46]
    M. Suzuki, I.S. Suzuki, R. Lee and J. Walter, Magnetic-field-induced superconductor-metal-insulator transitions in bismuth metal graphite, Phys. Rev. B 66 (2002) 014533.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Yunseok Seo
    • 1
    • 2
  • Geunho Song
    • 1
  • Chanyong Park
    • 3
    • 4
  • Sang-Jin Sin
    • 1
    Email author
  1. 1.Department of PhysicsHanyang UniversitySeoulKorea
  2. 2.Research Institute for Natural ScienceHanyang UniversitySeoulKorea
  3. 3.Asia Pacific Center of Theoretical PhysicsPohangKorea
  4. 4.Department of PhysicsPostechPohangKorea

Personalised recommendations