Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Newton-Cartan gravity and torsion
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Covariant Poisson’s equation in torsional Newton-Cartan gravity

18 April 2019

Mohammad Abedini, Hamid R. Afshar & Ahmad Ghodsi

Three-dimensional non-relativistic supergravity and torsion

11 March 2022

Patrick Concha, Lucrezia Ravera & Evelyn Rodríguez

Three-dimensional Newtonian gravity with cosmological constant and torsion

19 January 2023

Patrick Concha, Evelyn Rodríguez, … Paola Yañez

Einstein-Cartan gravity, matter, and scale-invariant generalization

27 October 2020

M. Shaposhnikov, A. Shkerin, … S. Zell

Einstein–Cartan–Dirac gravity with U(1) symmetry breaking

20 December 2019

Francisco Cabral, Francisco S. N. Lobo & Diego Rubiera-Garcia

Ghost-free higher-order theories of gravity with torsion

17 March 2021

Álvaro de la Cruz-Dombriz, Francisco José Maldonado Torralba & Anupam Mazumdar

Torsion/nonmetricity duality in f(R) gravity

15 May 2019

Damianos Iosifidis, Anastasios C. Petkou & Christos G. Tsagas

The cosmology of quadratic torsionful gravity

15 August 2021

Damianos Iosifidis & Lucrezia Ravera

Mimetic Einstein-Cartan-Sciama-Kibble (ECSK) gravity

23 October 2020

Fernando Izaurieta, Perla Medina, … Omar Valdivia

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 27 October 2017

Newton-Cartan gravity and torsion

  • Eric Bergshoeff1,
  • Athanasios Chatzistavrakidis1,2,
  • Luca Romano1 &
  • …
  • Jan Rosseel3 

Journal of High Energy Physics volume 2017, Article number: 194 (2017) Cite this article

  • 490 Accesses

  • 36 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan geometry and Lifshitz holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].

    ADS  MATH  Google Scholar 

  2. M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime symmetries of the quantum Hall effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. D. Van den Bleeken, Torsional Newton-Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav. 34 (2017) 185004 [arXiv:1703.03459] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J.M. Luttinger, Theory of thermal transport coefficients, Phys. Rev. 135 (1964) A1505 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Gromov and A.G. Abanov, Thermal Hall effect and geometry with torsion, Phys. Rev. Lett. 114 (2015) 016802 [arXiv:1407.2908] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Geracie, S. Golkar and M.M. Roberts, Hall viscosity, spin density and torsion, arXiv:1410.2574 [INSPIRE].

  7. M. Geracie, K. Prabhu and M.M. Roberts, Physical stress, mass and energy for non-relativistic matter, JHEP 06 (2017) 089 [arXiv:1609.06729] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. B. Julia and H. Nicolai, Null Killing vector dimensional reduction and Galilean geometrodynamics, Nucl. Phys. B 439 (1995) 291 [hep-th/9412002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].

  11. X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view, J. Math. Phys. 57 (2016) 022507 [arXiv:1412.8212] [INSPIRE].

  12. G. Festuccia, D. Hansen, J. Hartong and N.A. Obers, Torsional Newton-Cartan geometry from the Noether procedure, Phys. Rev. D 94 (2016) 105023 [arXiv:1607.01926] [INSPIRE].

    ADS  Google Scholar 

  13. R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian gravity and the Bargmann algebra, Class. Quant. Grav. 28 (2011) 105011 [arXiv:1011.1145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H.R. Afshar, E.A. Bergshoeff, A. Mehra, P. Parekh and B. Rollier, A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities, JHEP 04 (2016) 145 [arXiv:1512.06277] [INSPIRE].

    ADS  Google Scholar 

  15. E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the Schrödinger algebra, Class. Quant. Grav. 32 (2015) 135017 [arXiv:1409.5555] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. J. Hartong and N.A. Obers, Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry, JHEP 07 (2015) 155 [arXiv:1504.07461] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super)gravity as a non-relativistic limit, Class. Quant. Grav. 32 (2015) 205003 [arXiv:1505.02095] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan supergravity with torsion and Schrödinger supergravity, JHEP 11 (2015) 180 [arXiv:1509.04527] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Eric Bergshoeff, Athanasios Chatzistavrakidis & Luca Romano

  2. Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia

    Athanasios Chatzistavrakidis

  3. Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria

    Jan Rosseel

Authors
  1. Eric Bergshoeff
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Athanasios Chatzistavrakidis
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Luca Romano
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jan Rosseel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eric Bergshoeff.

Additional information

ArXiv ePrint: 1708.05414

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergshoeff, E., Chatzistavrakidis, A., Romano, L. et al. Newton-Cartan gravity and torsion. J. High Energ. Phys. 2017, 194 (2017). https://doi.org/10.1007/JHEP10(2017)194

Download citation

  • Received: 01 September 2017

  • Accepted: 16 October 2017

  • Published: 27 October 2017

  • DOI: https://doi.org/10.1007/JHEP10(2017)194

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Space-Time Symmetries
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.