Five-loop renormalisation of QCD in covariant gauges

Abstract

We present the complete set of vertex, wave function and charge renormalisation constants in QCD in a general simple gauge group and with the complete dependence on the covariant gauge parameter ξ in the minimal subtraction scheme of conventional dimensional regularisation. Our results confirm all already known results, which were obtained in the Feynman gauge, and allow the extraction of other useful gauges such as the Landau gauge. We use these results to extract the Landau gauge five-loop anomalous dimensions of the composite operator A 2 as well as the Landau gauge scheme independent gluon, ghost and fermion propagators at five loops.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  2. [2]

    C.G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cim. B 12 (1972) 20 [INSPIRE].

    Google Scholar 

  3. [3]

    D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    D.R.T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz. 41 (1979) 26 [INSPIRE].

    Google Scholar 

  8. [8]

    O.V. Tarasov, A.A. Vladimirov and A. Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    O.V. Tarasov, Anomalous dimensions of quark masses in three loop approximation (in Russian), JINR-P2-82-900, [INSPIRE].

  11. [11]

    S.A. Larin and J.A.M. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

  12. [12]

    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

  13. [13]

    K.G. Chetyrkin, Quark mass anomalous dimension to O(α 4 S ), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].

  14. [14]

    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].

  15. [15]

    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].

  16. [16]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Luthe, A. Maier, P. Marquard and Y. Schröder, Towards the five-loop β-function for a general gauge group, JHEP 07 (2016) 127 [arXiv:1606.08662] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions to \( \mathcal{O}\left({\alpha}_s^5\right) \), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].

  20. [20]

    T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP 01 (2017) 081 [arXiv:1612.05512] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  21. [21]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators, JHEP 04 (2017) 119 [arXiv:1702.01458] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    T. Luthe, A. Maier, P. Marquard and Y. Schröder, Complete renormalization of QCD at five loops, JHEP 03 (2017) 020 [arXiv:1701.07068] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    H. Suman and K. Schilling, First lattice study of ghost propagators in SU(2) and SU(3) gauge theories, Phys. Lett. B 373 (1996) 314 [hep-lat/9512003] [INSPIRE].

  24. [24]

    D. Becirevic et al., Asymptotic scaling of the gluon propagator on the lattice, Phys. Rev. D 61 (2000) 114508 [hep-ph/9910204] [INSPIRE].

  25. [25]

    D. Becirevic et al., Asymptotic behavior of the gluon propagator from lattice QCD, Phys. Rev. D 60 (1999) 094509 [hep-ph/9903364] [INSPIRE].

  26. [26]

    D. Becirevic et al., Gluon propagator, triple gluon vertex and the QCD coupling constant, Nucl. Phys. Proc. Suppl. 83 (2000) 159 [hep-lat/9908056] [INSPIRE].

  27. [27]

    L. von Smekal, K. Maltman and A. Sternbeck, The strong coupling and its running to four loops in a minimal MOM scheme, Phys. Lett. B 681 (2009) 336 [arXiv:0903.1696] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    ETM collaboration, B. Blossier et al., α S from Lattice QCD: progresses and perspectives for a realistic full-QCD determination of the running Strong coupling, PoS(ICHEP 2010)372 [arXiv:1012.3135] [INSPIRE].

  29. [29]

    B. Blossier et al., RI/MOM renormalization constants (N f = 4) and the strong coupling constant (N f = 2 + 1 + 1) from twisted-mass QCD, PoS(LATTICE 2011)223 [arXiv:1111.3023] [INSPIRE].

  30. [30]

    V.G. Bornyakov, E.M. Ilgenfritz, C. Litwinski, V.K. Mitrjushkin and M. Muller-Preussker, Landau gauge ghost propagator and running coupling in SU(2) lattice gauge theory, Phys. Rev. D 92 (2015) 074505 [arXiv:1302.5943] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    ETM collaboration, B. Blossier et al., Renormalization of quark propagator, vertex functions and twist-2 operators from twisted-mass lattice QCD at N f =4, Phys. Rev. D 91 (2015) 114507 [arXiv:1411.1109] [INSPIRE].

  32. [32]

    T. Luthe, A. Maier, P. Marquard and Y. Schröder, The five-loop β-function for a general gauge group and anomalous dimensions beyond Feynman gauge, arXiv:1709.07718 [INSPIRE].

  33. [33]

    W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev. D 25 (1982) 392 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  34. [34]

    K.G. Chetyrkin and F.V. Tkachov, Infrared R-operation and ultraviolet counterterms in the MS-scheme, Phys. Lett. B 114 (1982) 340 [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    K.G. Chetyrkin and V.A. Smirnov, R*-operation corrected, Phys. Lett. B 144 (1984) 419 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    V.A. Smirnov and K.G. Chetyrkin, R*-Operation in the Minimal Subtraction Scheme, Theor. Math. Phys. 63 (1985) 462 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  37. [37]

    K.G. Chetyrkin, Combinatorics of R-, R −1 - and R -operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE].

  38. [38]

    M. Steinhauser, Results and techniques of multiloop calculations, Phys. Rept. 364 (2002) 247 [hep-ph/0201075] [INSPIRE].

  39. [39]

    B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, arXiv:1704.06650 [INSPIRE].

  40. [40]

    T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS(LL2016)070 [arXiv:1607.07318] [INSPIRE].

  41. [41]

    T. Ueda, B. Ruijl and J.A.M. Vermaseren, Calculating four-loop massless propagators with Forcer, J. Phys. Conf. Ser. 762 (2016) 012060 [arXiv:1604.08767] [INSPIRE].

    Article  Google Scholar 

  42. [42]

    F. Herzog and B. Ruijl, The R -operation for Feynman graphs with generic numerators, JHEP 05 (2017) 037 [arXiv:1703.03776] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    K.G. Chetyrkin, Four-loop renormalization of QCD: Full set of renormalization constants and anomalous dimensions, Nucl. Phys. B 710 (2005) 499 [hep-ph/0405193] [INSPIRE].

  44. [44]

    K.G. Chetyrkin, G. Falcioni, F. Herzog and J. Vermaseren, A global infra-red rearrangement of the ultra-violet structure of QCD, to be published.

  45. [45]

    J.C. Collins, Structure of Counterterms in Dimensional Regularization, Nucl. Phys. B 80 (1974) 341 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(α 4 s ), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].

  47. [47]

    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector Correlator in Massless QCD at Order O(α 4 s ) and the QED β-function at Five Loop, JHEP 07 (2012) 017[arXiv:1206.1284] [INSPIRE].

  48. [48]

    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Complete \( \mathcal{O}\left({\alpha}_s^4\right) \) QCD Corrections to Hadronic Z-Decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].

  49. [49]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  51. [51]

    M. Tentyukov and J.A.M. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].

  52. [52]

    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

  53. [53]

    B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

  54. [54]

    T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

  55. [55]

    J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    A. Blasi, O. Piguet and S.P. Sorella, Landau gauge and finiteness, Nucl. Phys. B 356 (1991) 154 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-loop QCD propagators and vertices with one vanishing external momentum, JHEP 06 (2017) 040 [arXiv:1703.08532] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    J.A. Gracey, Three loop MS-bar renormalization of the Curci-Ferrari model and the dimension two BRST invariant composite operator in QCD, Phys. Lett. B 552 (2003) 101 [hep-th/0211144] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  59. [59]

    D. Dudal et al., Renormalizability of the local composite operator A 2 μ in linear covariant gauges, Phys. Lett. B 574 (2003) 325 [hep-th/0308181] [INSPIRE].

  60. [60]

    D. Dudal, H. Verschelde and S.P. Sorella, The anomalous dimension of the composite operator A 2 in the Landau gauge, Phys. Lett. B 555 (2003) 126 [hep-th/0212182] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Falcioni.

Additional information

ArXiv ePrint: 1709.08541

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chetyrkin, K.G., Falcioni, G., Herzog, F. et al. Five-loop renormalisation of QCD in covariant gauges. J. High Energ. Phys. 2017, 179 (2017). https://doi.org/10.1007/JHEP10(2017)179

Download citation

Keywords

  • Perturbative QCD
  • Renormalization Group