Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Vector SIMP dark matter
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Vector SIMP dark matter with approximate custodial symmetry

09 July 2019

Soo-Min Choi, Hyun Min Lee, … Mathias Pierre

A model of electroweakly interacting non-abelian vector dark matter

21 July 2020

Tomohiro Abe, Motoko Fujiwara, … Kohei Matsushita

Vector dark matter from split SU(2) gauge bosons

14 July 2021

Zexi Hu, Chengfeng Cai, … Hong-Hao Zhang

Feebly coupled vector boson dark matter in effective theory

23 December 2020

Basabendu Barman, Subhaditya Bhattacharya & Bohdan Grzadkowski

Conformal vector dark matter and strongly first-order electroweak phase transition

27 March 2019

Seyed Yaser Ayazi & Ahmad Mohamadnejad

Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM

12 April 2018

Sebastian Baum, Marcela Carena, … Carlos E.M. Wagner

A warped scalar portal to fermionic dark matter

20 January 2021

Adrian Carmona, Javier Castellano Ruiz & Matthias Neubert

A Sub-GeV Low Mass Hidden Dark Sector of SU(2)H × U(1)X

15 November 2021

Raymundo Ramos, Van Que Tran & Tzu-Chiang Yuan

Relic challenges for vector-like fermions as connectors to a dark sector

04 January 2023

Alexandre Carvunis, Navin McGinnis & David E. Morrissey

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 24 October 2017

Vector SIMP dark matter

  • Soo-Min Choi1,
  • Yonit Hochberg2,3,
  • Eric Kuflik2,3,
  • Hyun Min Lee1,
  • Yann Mambrini4,
  • Hitoshi Murayama5,6,7,8 &
  • …
  • Mathias Pierre4 

Journal of High Energy Physics volume 2017, Article number: 162 (2017) Cite this article

  • 393 Accesses

  • 47 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  2. G. Arcadi et al., The Waning of the WIMP? A Review of Models, Searches and Constraints, arXiv:1703.07364 [INSPIRE].

  3. XENON100 collaboration, E. Aprile et al., XENON100 Dark Matter Results from a Combination of 477 Live Days, Phys. Rev. D 94 (2016) 122001 [arXiv:1609.06154] [INSPIRE].

  4. LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  5. PandaX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].

  6. Fermi-LAT collaboration, M. Ackermann et al., Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background, JCAP 09 (2015) 008 [arXiv:1501.05464] [INSPIRE].

  7. H.E.S.S. collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].

  8. J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  9. E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  13. R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].

    Article  ADS  Google Scholar 

  14. H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z′ -portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].

    Article  Google Scholar 

  16. Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S.-M. Choi and H.M. Lee, Resonant SIMP dark matter, Phys. Lett. B 758 (2016) 47 [arXiv:1601.03566] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. S.-M. Choi, Y.-J. Kang and H.M. Lee, On thermal production of self-interacting dark matter, JHEP 12 (2016) 099 [arXiv:1610.04748] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [arXiv:1702.07860] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].

    ADS  Google Scholar 

  23. A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant SU(3) X , Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].

    ADS  Google Scholar 

  24. N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Heikinheimo, T. Tenkanen and K. Tuominen, WIMP miracle of the second kind, Phys. Rev. D 96 (2017) 023001 [arXiv:1704.05359] [INSPIRE].

    ADS  Google Scholar 

  26. J. Cline, H. Liu, T. Slatyer and W. Xue, Enabling Forbidden Dark Matter, arXiv:1702.07716 [INSPIRE].

  27. U.K. Dey, T.N. Maity and T.S. Ray, Light Dark Matter through Assisted Annihilation, JCAP 03 (2017) 045 [arXiv:1612.09074] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura, SIMP from a strong U(1) gauge theory with a monopole condensation, Phys. Rev. D 94 (2016) 055035 [arXiv:1606.01628] [INSPIRE].

  29. O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. I. Antoniadis, A. Boyarsky, S. Espahbodi, O. Ruchayskiy and J.D. Wells, Anomaly driven signatures of new invisible physics at the Large Hadron Collider, Nucl. Phys. B 824 (2010) 296 [arXiv:0901.0639] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. Y. Mambrini, A Clear Dark Matter gamma ray line generated by the Green-Schwarz mechanism, JCAP 12 (2009) 005 [arXiv:0907.2918] [INSPIRE].

    Article  ADS  Google Scholar 

  33. E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z-prime and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].

  34. H.M. Lee, D. Kim, K. Kong and S.C. Park, Diboson Excesses Demystified in Effective Field Theory Approach, JHEP 11 (2015) 150 [arXiv:1507.06312] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Arcadi, P. Ghosh, Y. Mambrini, M. Pierre and F.S. Queiroz, Z′ portal to Chern-Simons Dark Matter, arXiv:1706.04198 [INSPIRE].

  36. G. ’t Hooft, Which Topological Features of a Gauge Theory Can Be Responsible for Permanent Confinement?, NATO Sci. Ser. B 59 (1980) 117 [INSPIRE].

  37. E. D’Hoker and E. Farhi, Decoupling a Fermion Whose Mass Is Generated by a Yukawa Coupling: The General Case, Nucl. Phys. B 248 (1984) 59 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].

  39. M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].

  40. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

  41. M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].

  43. E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].

    ADS  Google Scholar 

  44. T. Banks and E. Rabinovici, Finite Temperature Behavior of the Lattice Abelian Higgs Model, Nucl. Phys. B 160 (1979) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  45. L. Susskind, Lattice Models of Quark Confinement at High Temperature, Phys. Rev. D 20 (1979) 2610 [INSPIRE].

    ADS  Google Scholar 

  46. S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Georgi, Complementarity and Stability Conditions, Phys. Lett. B 771 (2017) 558 [arXiv:1607.00369] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].

    Article  ADS  Google Scholar 

  49. E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, JHEP 08 (2017) 078 [arXiv:1706.05381] [INSPIRE].

    Article  ADS  Google Scholar 

  50. CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7,8 \) and 13TeV, JHEP 02(2017) 135 [arXiv:1610.09218] [INSPIRE].

  51. ATLAS collaboration, Search for invisible decays of a Higgs boson using vector-boson fusion in pp collisions at \( \sqrt{s} = 8 \) TeV with the ATLAS detector, JHEP 01 (2016) 172 [arXiv:1508.07869] [INSPIRE].

  52. ATLAS collaboration, Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].

  53. S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

  55. P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].

    Article  Google Scholar 

  56. S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].

  57. R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].

    Article  ADS  Google Scholar 

  59. Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting Superlight Dark Matter with Fermi-Degenerate Materials, JHEP 08 (2016) 057 [arXiv:1512.04533] [INSPIRE].

    Article  ADS  Google Scholar 

  60. Y. Hochberg, Y. Kahn, M. Lisanti, C.G. Tully and K.M. Zurek, Directional detection of dark matter with two-dimensional targets, Phys. Lett. B 772 (2017) 239 [arXiv:1606.08849] [INSPIRE].

    Article  ADS  Google Scholar 

  61. R. Essig, J. Mardon, O. Slone and T. Volansky, Detection of sub-GeV Dark Matter and Solar Neutrinos via Chemical-Bond Breaking, Phys. Rev. D 95 (2017) 056011 [arXiv:1608.02940] [INSPIRE].

    ADS  Google Scholar 

  62. S. Derenzo, R. Essig, A. Massari, A. Soto and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Scintillating Targets, Phys. Rev. D 96 (2017) 016026 [arXiv:1607.01009] [INSPIRE].

    ADS  Google Scholar 

  63. J. Tiffenberg et al., Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. Essig, T. Volansky and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].

    ADS  Google Scholar 

  65. ALEPH, DELPHI, L3, OPAL, SLD collaborations LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  66. BaBar collaboration, J.P. Lees et al., Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].

  67. BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e+e− Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

  68. R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e+e− Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].

    Article  ADS  Google Scholar 

  69. NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].

  70. P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed Inclusive Dark Photon Search at LHCb, Phys. Rev. Lett. 116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Chung-Ang University, Seoul, 06974, Korea

    Soo-Min Choi & Hyun Min Lee

  2. Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, U.S.A.

    Yonit Hochberg & Eric Kuflik

  3. Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel

    Yonit Hochberg & Eric Kuflik

  4. Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France

    Yann Mambrini & Mathias Pierre

  5. Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, U.S.A.

    Hitoshi Murayama

  6. Department of Physics, University of California, Berkeley, CA, 94720, U.S.A.

    Hitoshi Murayama

  7. Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, 277-8583, Japan

    Hitoshi Murayama

  8. Center for Japanese Studies, University of California, Berkeley, CA, 94720, U.S.A.

    Hitoshi Murayama

Authors
  1. Soo-Min Choi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yonit Hochberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Eric Kuflik
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Hyun Min Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yann Mambrini
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Hitoshi Murayama
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Mathias Pierre
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hyun Min Lee.

Additional information

ArXiv ePrint: 1707.01434

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, SM., Hochberg, Y., Kuflik, E. et al. Vector SIMP dark matter. J. High Energ. Phys. 2017, 162 (2017). https://doi.org/10.1007/JHEP10(2017)162

Download citation

  • Received: 29 September 2017

  • Accepted: 16 October 2017

  • Published: 24 October 2017

  • DOI: https://doi.org/10.1007/JHEP10(2017)162

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Gauge Symmetry
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.