S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP
12 (2015) 071 [arXiv:1505.01537] [INSPIRE].
ADS
MathSciNet
Google Scholar
L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP
04 (2017) 059 [arXiv:1610.04495] [INSPIRE].
MathSciNet
Article
Google Scholar
D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, arXiv:1707.00711 [INSPIRE].
O. Loukas, Abelian scalar theory at large global charge, Fortsch. Phys.
65 (2017) 1700028 [arXiv:1612.08985] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP
06 (2017) 011 [arXiv:1611.02912] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A Note on Inhomogeneous Ground States at Large Global Charge, arXiv:1705.05825 [INSPIRE].
S. Hellerman, S. Maeda and M. Watanabe, Operator Dimensions from Moduli, arXiv:1706.05743 [INSPIRE].
S. Coleman, Aspects Of Symmetry, Cambridge University Press, Cambridge U.K. (1988).
K.I. Kugel’ and D.I. Khomskii, The Jahn-Teller effect and magnetism: transition metal compounds, Phys. Usp.
25 (1982) 231.
A.V. Gorshkov et al., Two-orbital SU(N ) magnetism with ultracold alkaline-earth atoms, Nature Phys.
6 (2010) 289 [arXiv:0905.2610].
ADS
Article
Google Scholar
C. Laflamme et al., ℂP(N − 1) quantum field theories with alkaline-earth atoms in optical lattices, Annals Phys.
370 (2016) 117 [arXiv:1507.06788] [INSPIRE].
M. Kamal and G. Murthy, New O(3) transition in three dimensions, Phys. Rev. Lett.
71 (1993)1911.
O.I. Motrunich and A. Vishwanath, Emergent photons and new transitions in the O(3) σ-model with hedgehog suppression, Phys. Rev.
B 70 (2004) 075104 [cond-mat/0311222] [INSPIRE].
A. Nahum, J.T. Chalker, P. Serna, M. Ortuño and A.M. Somoza, Phase transitions in three-dimensional loop models and the CP
n−1
σ-model, Phys. Rev.
B 88 (2013) 134411 [arXiv:1308.0144] [INSPIRE].
ADS
Article
Google Scholar
G. Murthy and S. Sachdev, Action of Hedgehog Instantons in the Disordered Phase of the (2 + 1)-dimensional CP
N −1
Model, Nucl. Phys.
B 344 (1990) 557 [INSPIRE].
N. Read and S. Sachdev, Spin-Peierls, valence-bond solid and Néel ground states of low-dimensional quantum antiferromagnets, Phys. Rev.
B 42 (1990) 4568 [INSPIRE].
ADS
Article
Google Scholar
M.A. Metlitski, M. Hermele, T. Senthil and M.P.A. Fisher, Monopoles in CP
N −1
model via the state-operator correspondence, Phys. Rev.
B 78 (2008) 214418 [arXiv:0809.2816] [INSPIRE].
ADS
Article
Google Scholar
S.S. Pufu and S. Sachdev, Monopoles in 2 + 1-dimensional conformal field theories with global U(1) symmetry, JHEP
09 (2013) 127 [arXiv:1303.3006] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Dyer, M. Mezei, S.S. Pufu and S. Sachdev, Scaling dimensions of monopole operators in the
\( \mathbb{C}{\mathrm{P}}^{N_{b-1}} \)
theory in 2 + 1 dimensions, JHEP
06 (2015) 037 [Erratum ibid.
1603 (2016) 111] [arXiv:1504.00368] [INSPIRE].
T. Senthil et al., Deconfined Quantum Critical Points, Science
303 (2004) 1490 [cond-mat/0311326].
T. Senthil et al., Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev.
B 70 (2004) 144407.
ADS
Article
Google Scholar
F. Delfino, A. Pelissetto and E. Vicari, Three-dimensional antiferromagnetic CP
N −1
models, Phys. Rev.
E 91 (2015) 052109 [arXiv:1502.07599] [INSPIRE].
R.K. Kaul, Quantum phase transitions in bilayer SU(N) antiferromagnets, Phys. Rev.
B 85 (2012) 180411.
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.
177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.
177 (1969) 2247 [INSPIRE].
A.P. Polychronakos, Physics and Mathematics of Calogero particles, J. Phys.
A 39 (2006) 12793 [hep-th/0607033] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Weinberg, Phenomenological Lagrangians, Physica
A 96 (1979) 327 [INSPIRE].
V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, Springer, New York U.S.A. (1999), https://books.google.ch/books?id=9Iwrt0l0nFMC.
A. Monin, Partition function on spheres: How to use zeta function regularization, Phys. Rev.
D 94 (2016) 085013 [arXiv:1607.06493] [INSPIRE].
A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev.
D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].