Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Spontaneously broken spacetime symmetries and the role of inessential Goldstones

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 October 2017
  • Volume 2017, article number 51, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Spontaneously broken spacetime symmetries and the role of inessential Goldstones
Download PDF
  • Remko Klein1,
  • Diederik Roest1 &
  • David Stefanyszyn1 
  • 464 Accesses

  • 18 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In contrast to internal symmetries, there is no general proof that the coset construction for spontaneously broken spacetime symmetries leads to universal dynamics. One key difference lies in the role of Goldstone bosons, which for spacetime symmetries includes a subset which are inessential for the non-linear realisation and hence can be eliminated. In this paper we address two important issues that arise when eliminating inessential Goldstones.

The first concerns the elimination itself, which is often performed by imposing so-called inverse Higgs constraints. Contrary to claims in the literature, there are a series of conditions on the structure constants which must be satisfied to employ the inverse Higgs phenomenon, and we discuss which parametrisation of the coset element is the most effective in this regard. We also consider generalisations of the standard inverse Higgs constraints, which can include integrating out inessential Goldstones at low energies, and prove that under certain assumptions these give rise to identical effective field theories for the essential Goldstones.

Secondly, we consider mappings between non-linear realisations that differ both in the coset element and the algebra basis. While these can always be related to each other by a point transformation, remarkably, the inverse Higgs constraints are not necessarily mapped onto each other under this transformation. We discuss the physical implications of this non-mapping, with a particular emphasis on the coset space corresponding to the spontaneous breaking of the Anti-De Sitter isometries by a Minkowski probe brane.

Article PDF

Download to read the full article text

Similar content being viewed by others

Inequivalent Goldstone hierarchies for spontaneously broken spacetime symmetries

Article Open access 12 March 2020

Inequivalence of coset constructions for spacetime symmetries

Article Open access 05 February 2015

Nilpotent symmetries as a mechanism for Grand Unification

Article Open access 26 May 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

  2. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

  3. D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3 [INSPIRE].

    MathSciNet  Google Scholar 

  4. E.A. Ivanov and V.I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  5. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Sundrum, Effective field theory for a three-brane universe, Phys. Rev. D 59 (1999) 085009 [hep-ph/9805471] [INSPIRE].

  8. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Article  Google Scholar 

  9. R. Kallosh, Volkov-Akulov theory and D-branes, hep-th/9705118 [INSPIRE].

  10. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  11. C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Kallosh, A. Karlsson and D. Murli, Origin of Soft Limits from Nonlinear Supersymmetry in Volkov-Akulov Theory, JHEP 03 (2017) 081 [arXiv:1609.09127] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Bianchi, A.L. Guerrieri, Y.-t. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on effective actions, JHEP 10 (2016) 036 [arXiv:1605.08697] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, arXiv:1705.10078 [INSPIRE].

  16. A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].

    ADS  Google Scholar 

  18. L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino Terms for Relativistic Fluids, Superfluids, Solids and Supersolids, Phys. Rev. Lett. 114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Hinterbichler, L. Hui and J. Khoury, Conformal Symmetries of Adiabatic Modes in Cosmology, JCAP 08 (2012) 017 [arXiv:1203.6351] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    Article  ADS  Google Scholar 

  21. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations, JHEP 07 (2015) 101 [arXiv:1412.6098] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Nicolis, R. Penco, F. Piazza and R.A. Rosen, More on gapped Goldstones at finite density: More gapped Goldstones, JHEP 11 (2013) 055 [arXiv:1306.1240] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Endlich, A. Nicolis and R. Penco, Ultraviolet completion without symmetry restoration, Phys. Rev. D 89 (2014) 065006 [arXiv:1311.6491] [INSPIRE].

    ADS  Google Scholar 

  26. C.J. Isham, A. Salam and J.A. Strathdee, Spontaneous breakdown of conformal symmetry, Phys. Lett. B 31 (1970) 300 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. I.N. McArthur, Nonlinear realizations of symmetries and unphysical Goldstone bosons, JHEP 11 (2010) 140 [arXiv:1009.3696] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. T. Brauner and H. Watanabe, Spontaneous breaking of spacetime symmetries and the inverse Higgs effect, Phys. Rev. D 89 (2014) 085004 [arXiv:1401.5596] [INSPIRE].

    ADS  Google Scholar 

  29. L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets and Spinning Objects, JHEP 11 (2014) 008 [arXiv:1405.7384] [INSPIRE].

  30. R.L. Anderson and N.H. Ibragimov, Lie-Bäcklund transformations in applications, Society for Industrial and Applied Mathematics, Philadelphia (1979).

    Book  MATH  Google Scholar 

  31. S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. D 67 (2003) 049901] [hep-th/0206126] [INSPIRE].

  32. P. Creminelli, M. Serone and E. Trincherini, Non-linear Representations of the Conformal Group and Mapping of Galileons, JHEP 10 (2013) 040 [arXiv:1306.2946] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. K. Kampf and J. Novotny, Unification of Galileon Dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Millington, F. Niedermann and A. Padilla, Galileon apples and free oranges, arXiv:1707.06931 [INSPIRE].

  39. L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].

  40. M. Crisostomi, R. Klein and D. Roest, Higher Derivative Field Theories: Degeneracy Conditions and Classes, JHEP 06 (2017) 124 [arXiv:1703.01623] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: Exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Remko Klein, Diederik Roest & David Stefanyszyn

Authors
  1. Remko Klein
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Diederik Roest
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. David Stefanyszyn
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to David Stefanyszyn.

Additional information

ArXiv ePrint: 1709.03525

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, R., Roest, D. & Stefanyszyn, D. Spontaneously broken spacetime symmetries and the role of inessential Goldstones. J. High Energ. Phys. 2017, 51 (2017). https://doi.org/10.1007/JHEP10(2017)051

Download citation

  • Received: 26 September 2017

  • Accepted: 29 September 2017

  • Published: 09 October 2017

  • DOI: https://doi.org/10.1007/JHEP10(2017)051

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • Global Symmetries
  • Space-Time Symmetries
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature