Skip to main content

Novel measurements of anomalous triple gauge couplings for the LHC

A preprint version of the article is available at arXiv.

Abstract

Finding better ways to prove the Standard Model Effective Field Theory is a very important direction of research. This paper focuses on measurements of Electroweak triple gauge couplings, paying special attention on the regime of validity of the Effective Field Theory (EFT). In this regard, one of our goals is to find measurements leading to a large increase of the interference between the SM amplitude and the contribution of irrelevant operators in the EFT. We propose two such distributions that will lead to a better accuracy. Improvements compared to the traditional methods as well as LHC high luminosity prospects are discussed.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    P. Sphicas, plenary talk at EPS2017, https://indico.cern.ch/event/466934/contributions/2474222/attachments/1492504/2320608/EPS-Highlights-final.pdf.

  4. [4]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. [5]

    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    K.J.F. Gaemers and G.J. Gounaris, Polarization Amplitudes for e + e W + W and e + e ZZ, Z. Phys. C 1 (1979) 259 [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. De Rujula, M.B. Gavela, P. Hernández and E. Masso, The selfcouplings of vector bosons: Does LEP-1 obviate LEP-2?, Nucl. Phys. B 384 (1992) 3 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    U. Baur, T. Han and J. Ohnemus, WZ production at hadron colliders: Effects of nonstandard WWZ couplings and QCD corrections, Phys. Rev. D 51 (1995) 3381 [hep-ph/9410266] [INSPIRE].

  11. [11]

    U. Baur, T. Han and J. Ohnemus, Amplitude zeros in W ± Z production, Phys. Rev. Lett. 72 (1994) 3941 [hep-ph/9403248] [INSPIRE].

  12. [12]

    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    R. Roth, F. Campanario, S. Sapeta and D. Zeppenfeld, Anomalous couplings in WZ production beyond NLO QCD, PoS(LHCP2016)141 [arXiv:1612.03577] [INSPIRE].

  15. [15]

    L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective Field Theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].

  18. [18]

    B. Dumont, S. Fichet and G. von Gersdorff, A bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J. C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    DELPHI, OPAL, LEP Electroweak, ALEPH and L3 collaborations, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

  22. [22]

    L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys. B 423 (1994) 3 [Erratum ibid. B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].

  23. [23]

    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, U.S.A., June 4–30, 1995, (1996), pp. 539–584, hep-ph/9601359 [INSPIRE].

  27. [27]

    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  28. [28]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

  29. [29]

    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

  30. [30]

    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].

  31. [31]

    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    C. Degrande et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    G. Panico, Electroweak precision tests at hadron colliders, talk at ZPW 2017, Zürich, Switzerland, 9–11 January 2017, https://indico.cern.ch/event/587148/contributions/2409109/attachments/1393682/2123873/Panico_EWPT_at_LHC.pdf.

  36. [36]

    CMS collaboration, Search for anomalous couplings in boosted \( \mathrm{W}\mathrm{W}/\mathrm{W}\mathrm{Z}\to \ell \nu \mathrm{q}\overline{\mathrm{q}} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 772 (2017) 21 [arXiv:1703.06095] [INSPIRE].

  37. [37]

    D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    ATLAS collaboration, Measurements of W ± Z production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D 93 (2016) 092004 [arXiv:1603.02151] [INSPIRE].

  39. [39]

    F. Campanario, M. Rauch and S. Sapeta, W + W production at high transverse momenta beyond NLO, Nucl. Phys. B 879 (2014) 65 [arXiv:1309.7293] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  40. [40]

    F. Campanario, M. Rauch and S. Sapeta, ZZ production at high transverse momenta beyond NLO QCD, JHEP 08 (2015) 070 [arXiv:1504.05588] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  41. [41]

    F. Campanario and S. Sapeta, WZ production beyond NLO for high-pT observables, Phys. Lett. B 718 (2012) 100 [arXiv:1209.4595] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, Phys. Lett. B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate next-to-next-to-leading order results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Elias-Miró.

Additional information

ArXiv ePrint: 1707.08060

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azatov, A., Elias-Miró, J., Reyimuaji, Y. et al. Novel measurements of anomalous triple gauge couplings for the LHC. J. High Energ. Phys. 2017, 27 (2017). https://doi.org/10.1007/JHEP10(2017)027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2017)027

Keywords

  • Beyond Standard Model
  • Effective Field Theories