Journal of High Energy Physics

, 2016:133 | Cite as

Comparing Poisson Sigma Model with A-model

  • F. Bonechi
  • A.S. Cattaneo
  • R. IrasoEmail author
Open Access
Regular Article - Theoretical Physics


We discuss the A-model as a gauge fixing of the Poisson Sigma Model with target a symplectic structure. We complete the discussion in [4], where a gauge fixing defined by a compatible complex structure was introduced, by showing how to recover the A-model hierarchy of observables in terms of the AKSZ observables. Moreover, we discuss the off-shell supersymmetry of the A-model as a residual BV symmetry of the gauge fixed PSM action.


Sigma Models Topological Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    I.A. Batalin and G.A. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B 234 (1984) 106 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    F. Bonechi and M. Zabzine, Poisson σ-model on the sphere, Commun. Math. Phys. 285 (2009) 1033 [arXiv:0706.3164] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].
  6. [6]
    A. Cattaneo, P. Mnev and N. Reshetikhin, Classical BV theories on manifolds with boundary, Commun. Math. Phys. 332 (2014) 535 [arXiv:1201.0290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992) [INSPIRE].zbMATHGoogle Scholar
  8. [8]
    A. Kapustin and D. Orlov, Remarks on A branes, mirror symmetry and the Fukaya category, J. Geom. Phys. 48 (2003) 84 [hep-th/0109098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Kontsevich, Deformation quantization of Poisson manifolds. 1, Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].
  10. [10]
    D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007) 143 [hep-th/0608150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A.S. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155 (1993) 249 [hep-th/9205088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    I.V. Tyutin, B.L. Voronov and P.M. Lavrov, Canonical transformations and gauge dependence in general gauge theories, Sov. J. Nucl. Phys. 36 (1982) 292 [Yad. Fiz. 36 (1982) 498] [INSPIRE].
  13. [13]
    I. Vaisman, Lectures on the geometry of Poisson manifolds, Progr. Math. 118 (1994) 1.MathSciNetzbMATHGoogle Scholar
  14. [14]
    E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Witten, Mirror manifolds and topological field theory, in Essays on mirror manifolds, S.T. Yau ed., International Press, Hong Kong (1992) [hep-th/9112056] [INSPIRE].
  16. [16]
    S. Gukov and E. Witten, Branes and quantization, Adv. Theor. Math. Phys. 13 (2009) 1445 [arXiv:0809.0305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.INFN Sezione di FirenzeFirenzeItaly
  2. 2.University of ZurichZurichSwitzerland
  3. 3.SISSATriesteItaly

Personalised recommendations