Skip to main content

Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

A preprint version of the article is available at arXiv.

Abstract

Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and N N ), and three and four baryons (3He and 4He) as well, employing (2+1)-flavor lattice QCD at m π = 0.51GeV on four lattice volumes with L = 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound N N , 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.

References

  1. M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi and A. Ukawa, Helium nuclei, deuteron and dineutron in 2 + 1 flavor lattice QCD, Phys. Rev. D 86 (2012) 074514 [arXiv:1207.4277] [INSPIRE].

    ADS  Google Scholar 

  3. T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi and A. Ukawa, Study of quark mass dependence of binding energy for light nuclei in 2 + 1 flavor lattice QCD, Phys. Rev. D 92 (2015) 014501 [arXiv:1502.04182] [INSPIRE].

    ADS  Google Scholar 

  4. N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett. 99 (2007) 022001 [nucl-th/0611096] [INSPIRE].

  5. S. Aoki, T. Hatsuda and N. Ishii, Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics, Comput. Sci. Dis. 1 (2008) 015009 [arXiv:0805.2462] [INSPIRE].

    Article  Google Scholar 

  6. S. Aoki, T. Hatsuda and N. Ishii, Theoretical Foundation of the Nuclear Force in QCD and its applications to Central and Tensor Forces in Quenched Lattice QCD Simulations, Prog. Theor. Phys. 123 (2010) 89 [arXiv:0909.5585] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. S. Aoki for the HAL QCD collaboration, Hadron interactions in lattice QCD, Prog. Part. Nucl. Phys. 66 (2011) 687 [arXiv:1107.1284] [INSPIRE].

  8. HAL QCD collaboration, S. Aoki et al., Lattice QCD approach to Nuclear Physics, Prog. Theor. Exp. Phys. 2012 (2012) 01A105 [arXiv:1206.5088] [INSPIRE].

  9. HAL QCD collaboration, N. Ishii et al., Hadron-hadron interactions from imaginary-time Nambu-Bethe-Salpeter wave function on the lattice, Phys. Lett. B 712 (2012) 437 [arXiv:1203.3642] [INSPIRE].

  10. HAL QCD collaboration, T. Inoue et al., Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD, Phys. Rev. Lett. 106 (2011) 162002 [arXiv:1012.5928] [INSPIRE].

  11. HAL QCD collaboration, T. Inoue et al., Two-Baryon Potentials and H-Dibaryon from 3-flavor Lattice QCD Simulations, Nucl. Phys. A 881 (2012) 28 [arXiv:1112.5926] [INSPIRE].

  12. G. Parisi, The Strategy for Computing the Hadronic Mass Spectrum, Phys. Rept. 103 (1984) 203 [INSPIRE].

    ADS  Article  Google Scholar 

  13. G.P. Lepage, The analysis of algorithms for lattice field theory, in From Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, U.S.A., June 5-30 1989, T. Degrand and D. Toussaint eds., World Scientific, Singapore (1990).

  14. JLQCD and CP-PACS collaborations, S. Aoki et al., Nonperturbative O(a) improvement of the Wilson quark action with the RG-improved gauge action using the Schrödinger functional method, Phys. Rev. D 73 (2006) 034501 [hep-lat/0508031] [INSPIRE].

  15. T. Doi and M.G. Endres, Unified contraction algorithm for multi-baryon correlators on the lattice, Comput. Phys. Commun. 184 (2013) 117 [arXiv:1205.0585] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. PACS-CS collaboration, T. Yamazaki, Y. Kuramashi and A. Ukawa, Helium Nuclei in Quenched Lattice QCD, Phys. Rev. D 81 (2010) 111504 [arXiv:0912.1383] [INSPIRE].

  17. W. Detmold and K. Orginos, Nuclear correlation functions in lattice QCD, Phys. Rev. D 87 (2013) 114512 [arXiv:1207.1452] [INSPIRE].

    ADS  Google Scholar 

  18. J. Günther, B.C. Toth and L. Varnhorst, Recursive approach to determine correlation functions in multibaryon systems, Phys. Rev. D 87 (2013) 094513 [arXiv:1301.4895] [INSPIRE].

    ADS  Google Scholar 

  19. H. Nemura, Instructive discussion of an effective block algorithm for baryon-baryon correlators, Comput. Phys. Commun. 207 (2016) 91 [arXiv:1510.00903] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. T. Blum, T. Izubuchi and E. Shintani, New class of variance-reduction techniques using lattice symmetries, Phys. Rev. D 88 (2013) 094503 [arXiv:1208.4349] [INSPIRE].

    ADS  Google Scholar 

  21. E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung and C. Lehner, Covariant approximation averaging, Phys. Rev. D 91 (2015) 114511 [arXiv:1402.0244] [INSPIRE].

    ADS  Google Scholar 

  22. T. Iritani et al., in preparation.

  23. PACS-CS collaboration, T. Yamazaki, Y. Kuramashi and A. Ukawa, Two-Nucleon Bound States in Quenched Lattice QCD, Phys. Rev. D 84 (2011) 054506 [arXiv:1105.1418] [INSPIRE].

  24. NPLQCD collaboration, S.R. Beane et al., High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions, Phys. Rev. D 81 (2010) 054505 [arXiv:0912.4243] [INSPIRE].

  25. NPLQCD collaboration, S.R. Beane et al., Evidence for a Bound H-dibaryon from Lattice QCD, Phys. Rev. Lett. 106 (2011) 162001 [arXiv:1012.3812] [INSPIRE].

  26. NPLQCD collaboration, S.R. Beane et al., The Deuteron and Exotic Two-Body Bound States from Lattice QCD, Phys. Rev. D 85 (2012) 054511 [arXiv:1109.2889] [INSPIRE].

  27. S.R. Beane et al., Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics, Phys. Rev. Lett. 109 (2012) 172001 [arXiv:1204.3606] [INSPIRE].

    ADS  Article  Google Scholar 

  28. NPLQCD collaboration, S.R. Beane et al., Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry, Phys. Rev. D 87 (2013) 034506 [arXiv:1206.5219] [INSPIRE].

  29. NPLQCD collaboration, S.R. Beane et al., Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry, Phys. Rev. C 88 (2013) 024003 [arXiv:1301.5790] [INSPIRE].

  30. S.R. Beane et al., Magnetic moments of light nuclei from lattice quantum chromodynamics, Phys. Rev. Lett. 113 (2014) 252001 [arXiv:1409.3556] [INSPIRE].

    ADS  Article  Google Scholar 

  31. S.R. Beane, W. Detmold, K. Orginos and M.J. Savage, Uncertainty Quantification in Lattice QCD Calculations for Nuclear Physics, J. Phys. G 42 (2015) 034022 [arXiv:1410.2937] [INSPIRE].

    ADS  Article  Google Scholar 

  32. NPLQCD collaboration, S.R. Beane et al., Ab initio Calculation of the npdγ Radiative Capture Process, Phys. Rev. Lett. 115 (2015) 132001 [arXiv:1505.02422] [INSPIRE].

  33. NPLQCD collaboration, E. Chang et al., Magnetic structure of light nuclei from lattice QCD, Phys. Rev. D 92 (2015) 114502 [arXiv:1506.05518] [INSPIRE].

  34. NPLQCD collaboration, W. Detmold et al., Unitary Limit of Two-Nucleon Interactions in Strong Magnetic Fields, Phys. Rev. Lett. 116 (2016) 112301 [arXiv:1508.05884] [INSPIRE].

  35. NPLQCD collaboration, K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang and W. Detmold, Two nucleon systems at m π ∼ 450 MeV from lattice QCD, Phys. Rev. D 92 (2015) 114512 [arXiv:1508.07583] [INSPIRE].

  36. E. Berkowitz et al., Two-Nucleon Higher Partial-Wave Scattering from Lattice QCD, arXiv:1508.00886 [INSPIRE].

  37. H.-W. Lin, Review of Baryon Spectroscopy in Lattice QCD, Chin. J. Phys. 49 (2011) 827 [arXiv:1106.1608] [INSPIRE].

    Google Scholar 

  38. T. Iritani et al., in preparation.

  39. http://www.lqcd.org/ildg.

  40. http://www.jldg.org.

  41. Columbia Physics System (CPS), http://usqcd-software.github.io/CPS.html.

  42. Bridge++, http://bridge.kek.jp/Lattice-code/.

  43. M. Schröck and H. Vogt, Coulomb, Landau and Maximally Abelian Gauge Fixing in Lattice QCD with Multi-GPUs, Comput. Phys. Commun. 184 (2013) 1907 [arXiv:1212.5221] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. T. Boku et al., Multi-block/multi-core SSOR preconditioner for the QCD quark solver for K computer, PoS(LATTICE 2012)188 [arXiv:1210.7398] [INSPIRE].

  45. M. Terai et al., Performance Tuning of a Lattice QCD code on a node of the K computer (in Japanese), IPSJ Trans. ACS 6 (2013) 43.

    Google Scholar 

  46. HAL QCD collaboration, B. Charron, A comparative study of two lattice approaches to two-body systems, PoS(LATTICE 2013)223 [arXiv:1312.1032] [INSPIRE].

  47. B. Charron et al., in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to T. Iritani.

Additional information

ArXiv ePrint: 1607.06371

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The HAL QCD collaboration., Iritani, T., Doi, T. et al. Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD. J. High Energ. Phys. 2016, 101 (2016). https://doi.org/10.1007/JHEP10(2016)101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2016)101

Keywords

  • Lattice QCD
  • Lattice Quantum Field Theory