Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Convexity, gauge-dependence and tunneling rates
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Tunneling potentials for the tunneling action: gauge invariance

16 August 2022

Suntharan Arunasalam & Michael J. Ramsey-Musolf

Functional methods for false-vacuum decay in real time

11 December 2019

Wen-Yuan Ai, Björn Garbrecht & Carlos Tamarit

Two-point functions and bootstrap applications in quantum field theories

23 February 2022

Denis Karateev

T T ¯ $$ T\overline{T} $$ deformed partition functions

20 August 2018

Shouvik Datta & Yunfeng Jiang

Entanglement entropy, dualities, and deconfinement in gauge theories

28 August 2018

Mohamed M. Anber & Benjamin J. Kolligs

Thermodynamic bootstrap program for integrable QFT’s: form factors and correlation functions at finite energy density

11 January 2019

Axel Cortés Cubero & Miłosz Panfil

Modular invariance, tauberian theorems and microcanonical entropy

28 October 2019

Baur Mukhametzhanov & Alexander Zhiboedav

Rényi divergences from Euclidean quenches

15 April 2020

Barsha G. Chowdhury, Shouvik Datta & Justin R. David

Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ

26 September 2018

Scott Collier, Petr Kravchuk, … Xi Yin

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 October 2016

Convexity, gauge-dependence and tunneling rates

  • Alexis D. Plascencia1 &
  • Carlos Tamarit1 

Journal of High Energy Physics volume 2016, Article number: 99 (2016) Cite this article

  • 400 Accesses

  • 37 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

    ADS  Google Scholar 

  2. L. Dolan and R. Jackiw, Gauge invariant signal for gauge symmetry breaking, Phys. Rev. D 9 (1974) 2904 [INSPIRE].

    ADS  Google Scholar 

  3. N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Fukuda and T. Kugo, Gauge invariance in the effective action and potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].

    ADS  Google Scholar 

  5. B.L. Voronov, P.M. Lavrov and I.V. Tyutin, Canonical transformations and the gauge dependence in general gauge theories (in Russian), Yad. Fiz. 36 (1982) 498 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. R. Kobes, G. Kunstatter and A. Rebhan, Gauge dependence identities and their application at finite temperature, Nucl. Phys. B 355 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.M. Lavrov and I.V. Tyutin, On structure of renormalization in gauge theories (in Russian), Yad. Fiz. 34 (1981) 277 [INSPIRE].

    MathSciNet  Google Scholar 

  8. P.M. Lavrov and I.V. Tyutin, On generating functional of vertex functions in the Yang-Mills theories (in Russian), Yad. Fiz. 34 (1981) 850 [INSPIRE].

    MathSciNet  Google Scholar 

  9. I.J.R. Aitchison and C.M. Fraser, Gauge invariance and the effective potential, Annals Phys. 156 (1984) 1 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D. Johnston, Nielsen identities in the ’t Hooft gauge, Nucl. Phys. B 253 (1985) 687 [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.R.S. Do Nascimento and D. Bazeia, Gauge invariance of the effective potential, Phys. Rev. D 35 (1987) 2490 [INSPIRE].

    ADS  Google Scholar 

  12. C. Contreras and L. Vergara, The Nielsen identities for the generalized R ξ gauge, Phys. Rev. D 55 (1997) 5241 [Erratum ibid. D 56 (1997) 6714] [hep-th/9610109] [INSPIRE].

  13. O.M. Del Cima, D.H.T. Franco and O. Piguet, Gauge independence of the effective potential revisited, Nucl. Phys. B 551 (1999) 813 [hep-th/9902084] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L.P. Alexander and A. Pilaftsis, The one-loop effective potential in non-linear gauges, J. Phys. G 36 (2009) 045006 [arXiv:0809.1580] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Johnston, Coleman-Weinberg, Nielsen and daisies, Phys. Lett. B 186 (1987) 185 [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Metaxas and E.J. Weinberg, Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking, Phys. Rev. D 53 (1996) 836 [hep-ph/9507381] [INSPIRE].

  17. D. Metaxas, Derivative expansion and gauge independence of the false vacuum decay rate in various gauges, Phys. Rev. D 63 (2001) 085009 [hep-ph/0011015] [INSPIRE].

  18. D. Binosi, J. Papavassiliou and A. Pilaftsis, Displacement operator formalism for renormalization and gauge dependence to all orders, Phys. Rev. D 71 (2005) 085007 [hep-ph/0501259] [INSPIRE].

  19. M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of effective potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].

    ADS  Google Scholar 

  21. A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of the Standard Model effective potential, Phys. Rev. Lett. 113 (2014) 241801 [arXiv:1408.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  23. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. L. Di Luzio and L. Mihaila, On the gauge dependence of the Standard Model vacuum instability scale, JHEP 06 (2014) 079 [arXiv:1404.7450] [INSPIRE].

    Article  Google Scholar 

  25. A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Stability of the electroweak vacuum: gauge independence and advanced precision, Phys. Rev. Lett. 115 (2015) 201802 [arXiv:1507.08833] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Z. Lalak, M. Lewicki and P. Olszewski, Hints of BSM physics in the SM effective potential, PoS(CORFU2014)106 [arXiv:1505.05505] [INSPIRE].

  27. J.R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP 09 (2015) 174 [arXiv:1505.04825] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Baacke and K. Heitmann, Gauge invariance of the one loop effective action of the Higgs field in the SU(2) Higgs model, Phys. Rev. D 60 (1999) 105037 [hep-th/9905201] [INSPIRE].

    ADS  Google Scholar 

  30. N.K. Nielsen, Removing the gauge parameter dependence of the effective potential by a field redefinition, Phys. Rev. D 90 (2014) 036008 [arXiv:1406.0788] [INSPIRE].

    ADS  Google Scholar 

  31. L. Delle Rose, C. Marzo and A. Urbano, On the fate of the Standard Model at finite temperature, JHEP 05 (2016) 050 [arXiv:1507.06912] [INSPIRE].

    Article  Google Scholar 

  32. P.H. Frampton, Vacuum instability and Higgs scalar mass, Phys. Rev. Lett. 37 (1976) 1378 [Erratum ibid. 37 (1976) 1716] [INSPIRE].

  33. C.M. Bender, F. Cooper, B. Freedman and R.W. Haymaker, Tunneling and the low momentum expansion of the effective action, Nucl. Phys. B 256 (1985) 653 [INSPIRE].

    Article  ADS  Google Scholar 

  34. E.J. Weinberg, Vacuum decay in theories with symmetry breaking by radiative corrections, Phys. Rev. D 47 (1993) 4614 [hep-ph/9211314] [INSPIRE].

  35. B. Garbrecht and P. Millington, Constraining the effective action by a method of external sources, Nucl. Phys. B 906 (2016) 105 [arXiv:1509.07847] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. B. Garbrecht and P. Millington, Green’s function method for handling radiative effects on false vacuum decay, Phys. Rev. D 91 (2015) 105021 [arXiv:1501.07466] [INSPIRE].

    ADS  Google Scholar 

  37. B. Garbrecht and P. Millington, Self-consistent solitons for vacuum decay in radiatively generated potentials, Phys. Rev. D 92 (2015) 125022 [arXiv:1509.08480] [INSPIRE].

    ADS  Google Scholar 

  38. J. Iliopoulos, C. Itzykson and A. Martin, Functional methods and perturbation theory, Rev. Mod. Phys. 47 (1975) 165 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. E.J. Weinberg and A.-Q. Wu, Understanding complex perturbative effective potentials, Phys. Rev. D 36 (1987) 2474 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. L. O’Raifeartaigh, A. Wipf and H. Yoneyama, The constraint effective potential, Nucl. Phys. B 271 (1986) 653 [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Fukuda and E. Kyriakopoulos, Derivation of the effective potential, Nucl. Phys. B 85 (1975) 354 [INSPIRE].

    Article  ADS  Google Scholar 

  42. C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

  43. B.S. DeWitt, Quantum theory of gravity. 2. The manifestly covariant theory, Phys. Rev. 162 (1967) 1195 [INSPIRE].

  44. Y. Fujimoto, L. O’Raifeartaigh and G. Parravicini, Effective potential for nonconvex potentials, Nucl. Phys. B 212 (1983) 268 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. C.M. Bender and F. Cooper, Failure of the naive loop expansion for the effective potential in ϕ 4 field theory when there is ‘broken symmetry’, Nucl. Phys. B 224 (1983) 403 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. F. Cooper and B. Freedman, Renormalizing the effective potential for spontaneously broken gϕ 4 field theory, Nucl. Phys. B 239 (1984) 459 [INSPIRE].

    Article  ADS  Google Scholar 

  47. K. Tabata and I. Umemura, Convexity of the effective potential, Prog. Theor. Phys. 74 (1985) 1360 [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Hindmarsh and D. Johnston, Convexity of the effective potential, J. Phys. A 19 (1986) 141 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. J. Alexandre, Spontaneous symmetry breaking and linear effective potentials, Phys. Rev. D 86 (2012) 025028 [arXiv:1205.1160] [INSPIRE].

    ADS  Google Scholar 

  50. J. Alexandre and A. Tsapalis, Maxwell construction for scalar field theories with spontaneous symmetry breaking, Phys. Rev. D 87 (2013) 025028 [arXiv:1211.0921] [INSPIRE].

    ADS  Google Scholar 

  51. G. ’t Hooft, The background field method in gauge field theories, (1975) [INSPIRE].

  52. D.G. Boulware, Gauge dependence of the effective action, Phys. Rev. D 23 (1981) 389 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. L.F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  54. R.W. Haymaker and J. Perez-Mercader, Convexity of the effective potential, Phys. Rev. D 27 (1983) 1948 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M.B. Einhorn and D.R.T. Jones, The effective potential, the renormalisation group and vacuum stability, JHEP 04 (2007) 051 [hep-ph/0702295] [INSPIRE].

  57. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  58. L.H. Chan, Effective action expansion in perturbation theory, Phys. Rev. Lett. 54 (1985) 1222 [Erratum ibid. 56 (1986) 404] [INSPIRE].

  59. O. Cheyette, Derivative expansion of the effective action, Phys. Rev. Lett. 55 (1985) 2394 [INSPIRE].

    Article  ADS  Google Scholar 

  60. R.V. Konoplich, Calculation of quantum corrections to nontrivial classical solutions by means of the zeta function, Theor. Math. Phys. 73 (1987) 1286 [Teor. Mat. Fiz. 73 (1987) 379] [INSPIRE].

  61. C. Scrucca, Advanced quantum field theory, http://itp.epfl.ch/page-60691-en.html.

  62. Z. Lalak, M. Lewicki and P. Olszewski, Gauge fixing and renormalisation scale independence of tunneling rate in Abelian Higgs model and in the Standard Model, arXiv:1605.06713 [INSPIRE].

  63. A. Andreassen, D. Farhi, W. Frost and M.D. Schwartz, A direct approach to quantum tunneling, arXiv:1602.01102 [INSPIRE].

  64. M. Quirós, Finite temperature field theory and phase transitions, in High energy physics and cosmology. Proceedings, Summer School, Trieste Italy June 29-July 17 1998, pg. 187 [hep-ph/9901312] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Particle Physics Phenomenology, Durham University, South Road, Durham, DH1 3LE, U.K.

    Alexis D. Plascencia & Carlos Tamarit

Authors
  1. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Carlos Tamarit
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Carlos Tamarit.

Additional information

ArXiv ePrint: 1510.07613

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plascencia, A.D., Tamarit, C. Convexity, gauge-dependence and tunneling rates. J. High Energ. Phys. 2016, 99 (2016). https://doi.org/10.1007/JHEP10(2016)099

Download citation

  • Received: 11 August 2016

  • Accepted: 17 October 2016

  • Published: 19 October 2016

  • DOI: https://doi.org/10.1007/JHEP10(2016)099

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge Symmetry
  • Nonperturbative Effects
  • Spontaneous Symmetry Breaking
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.