A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev.
D 23 (1981) 347 [INSPIRE].
ADS
Google Scholar
A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett.
B 108 (1982) 389 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett.
B 117 (1982) 175 [INSPIRE].
ADS
Article
Google Scholar
A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett.
48 (1982) 1220 [INSPIRE].
ADS
Article
Google Scholar
S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett.
B 115 (1982) 295 [INSPIRE].
ADS
Article
Google Scholar
A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett.
49 (1982) 1110 [INSPIRE].
ADS
Article
Google Scholar
A.H. Guth and S.-Y. Pi, The Quantum Mechanics of the Scalar Field in the New Inflationary Universe, Phys. Rev.
D 32 (1985) 1899 [INSPIRE].
ADS
MathSciNet
Google Scholar
Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582 [INSPIRE].
Planck collaboration, N. Aghanim et al., Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys. (2015) [arXiv:1507.02704] [INSPIRE].
WMAP collaboration, C.L. Bennett et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl.
208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev.
D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
ADS
Google Scholar
X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP
04 (2010) 027 [arXiv:0911.3380] [INSPIRE].
ADS
Article
Google Scholar
X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron.
2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].
ADS
Article
Google Scholar
D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev.
D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
ADS
Google Scholar
V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP
11 (2012) 047 [arXiv:1204.4207] [INSPIRE].
ADS
Article
Google Scholar
X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP
09 (2012) 021 [arXiv:1205.0160] [INSPIRE].
ADS
Article
Google Scholar
T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP
06 (2013) 051 [arXiv:1211.1624] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP
11 (2013) 043 [arXiv:1306.3691] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Wang, Inflation, Cosmic Perturbations and Non-Gaussianities, Commun. Theor. Phys.
62 (2014) 109 [arXiv:1303.1523] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, arXiv:1606.00513 [INSPIRE].
N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP
08 (2016) 051 [arXiv:1604.07841] [INSPIRE].
ADS
Article
Google Scholar
H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, arXiv:1607.03735 [INSPIRE].
X. Chen, M.H. Namjoo and Y. Wang, Quantum Primordial Standard Clocks, JCAP
02 (2016) 013 [arXiv:1509.03930] [INSPIRE].
ADS
Google Scholar
X. Chen, M.H. Namjoo and Y. Wang, Probing the Primordial Universe using Massive Fields, arXiv:1601.06228 [INSPIRE].
X. Chen, M.H. Namjoo and Y. Wang, A Direct Probe of the Evolutionary History of the Primordial Universe, Sci. China Phys. Mech. Astron.
59 (2016) 101021 [arXiv:1608.01299] [INSPIRE].
Article
Google Scholar
E.A. Lim, Quantum information of cosmological correlations, Phys. Rev.
D 91 (2015) 083522 [arXiv:1410.5508] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Maldacena, A model with cosmological Bell inequalities, Fortsch. Phys.
64 (2016) 10 [arXiv:1508.01082] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
S. Choudhury, S. Panda and R. Singh, Bell violation in the Sky, arXiv:1607.00237 [INSPIRE].
T. Markkanen and A. Rajantie, Massive scalar field evolution in de Sitter, arXiv:1607.00334 [INSPIRE].
S. Kanno, J.P. Shock and J. Soda, Quantum discord in de Sitter space, arXiv:1608.02853 [INSPIRE].
A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Inflation and squeezed quantum states, Phys. Rev.
D 50 (1994) 4807 [astro-ph/9303001] [INSPIRE].
J. Lesgourgues, D. Polarski and A.A. Starobinsky, Quantum to classical transition of cosmological perturbations for nonvacuum initial states, Nucl. Phys.
B 497 (1997) 479 [gr-qc/9611019] [INSPIRE].
C. Kiefer, D. Polarski and A.A. Starobinsky, Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys.
D 7 (1998) 455 [gr-qc/9802003] [INSPIRE].
C. Kiefer, I. Lohmar, D. Polarski and A.A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology, Class. Quant. Grav.
24 (2007) 1699 [astro-ph/0610700] [INSPIRE].
C. Kiefer and D. Polarski, Why do cosmological perturbations look classical to us?, Adv. Sci. Lett.
2 (2009) 164 [arXiv:0810.0087] [INSPIRE].
Article
Google Scholar
C.P. Burgess, R. Holman and D. Hoover, Decoherence of inflationary primordial fluctuations, Phys. Rev.
D 77 (2008) 063534 [astro-ph/0601646] [INSPIRE].
C.P. Burgess, R. Holman, G. Tasinato and M. Williams, EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical, JHEP
03 (2015) 090 [arXiv:1408.5002] [INSPIRE].
MathSciNet
Article
Google Scholar
C.P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP
01 (2016) 153 [arXiv:1512.00169] [INSPIRE].
ADS
Article
Google Scholar
D. Giulini, C. Kiefer, E. Joos, J. Kupsch, I.O. Stamatescu and H.D. Zeh, Decoherence and the appearance of a classical world in quantum theory, Springer, Berlin, Germany (2003).
MATH
Google Scholar
C.-H. Wu, K.-W. Ng, W. Lee, D.-S. Lee and Y.-Y. Charng, Quantum noise and a low cosmic microwave background quadrupole, JCAP
02 (2007) 006 [astro-ph/0604292] [INSPIRE].
T. Prokopec and G.I. Rigopoulos, Decoherence from Isocurvature perturbations in Inflation, JCAP
11 (2007) 029 [astro-ph/0612067] [INSPIRE].
J.F. Koksma, T. Prokopec and M.G. Schmidt, Decoherence in an Interacting Quantum Field Theory: The Vacuum Case, Phys. Rev.
D 81 (2010) 065030 [arXiv:0910.5733] [INSPIRE].
ADS
Google Scholar
J.F. Koksma, T. Prokopec and M.G. Schmidt, Decoherence in an Interacting Quantum Field Theory: Thermal Case, Phys. Rev.
D 83 (2011) 085011 [arXiv:1102.4713] [INSPIRE].
ADS
Google Scholar
E. Nelson, Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP
03 (2016) 022 [arXiv:1601.03734] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
W.H. Zurek, Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?, Phys. Rev.
D 24 (1981) 1516 [INSPIRE].
ADS
MathSciNet
Google Scholar
W.H. Zurek, Environment induced superselection rules, Phys. Rev.
D 26 (1982) 1862 [INSPIRE].
ADS
MathSciNet
Google Scholar
W.H. Zurek, Decoherence and the Transition from Quantum to Classical, Physics Today
44 (1991) 36.
Article
Google Scholar
W.H. Zurek, Decoherence, einselection and the quantum origins of the classical, Rev. Mod. Phys.
75 (2003) 715 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
W.H. Zurek, Decoherence and the transition from quantum to classical — Revisited, Los Alamos Science
27 (2002) 86 [quant-ph/0306072].
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, arXiv:1502.01592 [INSPIRE].
V. Assassi, D. Baumann, D. Green and L. McAllister, Planck-Suppressed Operators, JCAP
01 (2014) 033 [arXiv:1304.5226] [INSPIRE].
ADS
Article
Google Scholar
D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav.
13 (1996) 377 [gr-qc/9504030] [INSPIRE].
C. Kiefer and D. Polarski, Emergence of classicality for primordial fluctuations: Concepts and analogies, Annalen Phys.
7 (1998) 137 [gr-qc/9805014] [INSPIRE].
M. Mijic, Particle production and classical condensates in de Sitter space, Phys. Rev.
D 57 (1998) 2138 [gr-qc/9801094] [INSPIRE].
O. Brodier and A.M. Ozorio de Almeida, Symplectic evolution of Wigner functions in Markovian open systems, Phys. Rev.
E 69 (2004) 016204 [quant-ph/0304087].
L. Diosi and C. Kiefer, Exact positivity of the Wigner and P functions of a Markovian open system, J. Phys.
A 35 (2002) 2675 [quant-ph/0111139] [INSPIRE].
H. Jiang, Y. Wang and S. Zhou, On the initial condition of inflationary fluctuations, JCAP
04 (2016) 041 [arXiv:1601.01179] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP
03 (2003) 046 [hep-th/0212072] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.-H. Ho, W. Li, F.-L. Lin and B. Ning, Quantum Decoherence with Holography, JHEP
01 (2014) 170 [arXiv:1309.5855] [INSPIRE].
ADS
Article
Google Scholar
J. Liu, D.G. Wang and Y. Zhou, in preperation.