Skip to main content

Cosmic decoherence: massive fields

A preprint version of the article is available at arXiv.

Abstract

We study the decoherence of massive fields during inflation based on the Zurek’s density matrix approach. With the cubic interaction between inflaton and massive fields, the reduced density matrix for the massive fields can be calculated in the Schrödinger picture which is related to the variance of the non-Gaussian exponent in the wave functional. The decoherence rate is computed in the one-loop form from functional integration. For heavy fields with \( m\gtrsim \mathcal{O}(H) \), quantum fluctuations will easily stay in the quantum state and decoherence is unlikely. While for light fields with mass smaller than \( \mathcal{O}(H) \), quantum fluctuations are easily decohered within 5 ∼ 10 e-folds after Hubble crossing. Thus heavy fields can play a key role in studying problems involving inflationary quantum information.

References

  1. A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  2. A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].

    ADS  Article  Google Scholar 

  4. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    ADS  Article  Google Scholar 

  5. S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  6. A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].

    ADS  Article  Google Scholar 

  7. A.H. Guth and S.-Y. Pi, The Quantum Mechanics of the Scalar Field in the New Inflationary Universe, Phys. Rev. D 32 (1985) 1899 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582 [INSPIRE].

  9. Planck collaboration, N. Aghanim et al., Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys. (2015) [arXiv:1507.02704] [INSPIRE].

  10. WMAP collaboration, C.L. Bennett et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].

  11. X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

    ADS  Google Scholar 

  12. X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    ADS  Article  Google Scholar 

  13. X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].

    ADS  Article  Google Scholar 

  14. D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Google Scholar 

  15. V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    ADS  Article  Google Scholar 

  16. X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

    ADS  Article  Google Scholar 

  17. T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. Y. Wang, Inflation, Cosmic Perturbations and Non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, arXiv:1606.00513 [INSPIRE].

  21. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  22. X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    ADS  Article  Google Scholar 

  23. H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, arXiv:1607.03735 [INSPIRE].

  24. X. Chen, M.H. Namjoo and Y. Wang, Quantum Primordial Standard Clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].

    ADS  Google Scholar 

  25. X. Chen, M.H. Namjoo and Y. Wang, Probing the Primordial Universe using Massive Fields, arXiv:1601.06228 [INSPIRE].

  26. X. Chen, M.H. Namjoo and Y. Wang, A Direct Probe of the Evolutionary History of the Primordial Universe, Sci. China Phys. Mech. Astron. 59 (2016) 101021 [arXiv:1608.01299] [INSPIRE].

    Article  Google Scholar 

  27. E.A. Lim, Quantum information of cosmological correlations, Phys. Rev. D 91 (2015) 083522 [arXiv:1410.5508] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. J. Maldacena, A model with cosmological Bell inequalities, Fortsch. Phys. 64 (2016) 10 [arXiv:1508.01082] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  29. S. Choudhury, S. Panda and R. Singh, Bell violation in the Sky, arXiv:1607.00237 [INSPIRE].

  30. T. Markkanen and A. Rajantie, Massive scalar field evolution in de Sitter, arXiv:1607.00334 [INSPIRE].

  31. S. Kanno, J.P. Shock and J. Soda, Quantum discord in de Sitter space, arXiv:1608.02853 [INSPIRE].

  32. A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Inflation and squeezed quantum states, Phys. Rev. D 50 (1994) 4807 [astro-ph/9303001] [INSPIRE].

  33. J. Lesgourgues, D. Polarski and A.A. Starobinsky, Quantum to classical transition of cosmological perturbations for nonvacuum initial states, Nucl. Phys. B 497 (1997) 479 [gr-qc/9611019] [INSPIRE].

  34. C. Kiefer, D. Polarski and A.A. Starobinsky, Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D 7 (1998) 455 [gr-qc/9802003] [INSPIRE].

  35. C. Kiefer, I. Lohmar, D. Polarski and A.A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology, Class. Quant. Grav. 24 (2007) 1699 [astro-ph/0610700] [INSPIRE].

  36. C. Kiefer and D. Polarski, Why do cosmological perturbations look classical to us?, Adv. Sci. Lett. 2 (2009) 164 [arXiv:0810.0087] [INSPIRE].

    Article  Google Scholar 

  37. C.P. Burgess, R. Holman and D. Hoover, Decoherence of inflationary primordial fluctuations, Phys. Rev. D 77 (2008) 063534 [astro-ph/0601646] [INSPIRE].

  38. C.P. Burgess, R. Holman, G. Tasinato and M. Williams, EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical, JHEP 03 (2015) 090 [arXiv:1408.5002] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  39. C.P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP 01 (2016) 153 [arXiv:1512.00169] [INSPIRE].

    ADS  Article  Google Scholar 

  40. D. Giulini, C. Kiefer, E. Joos, J. Kupsch, I.O. Stamatescu and H.D. Zeh, Decoherence and the appearance of a classical world in quantum theory, Springer, Berlin, Germany (2003).

    MATH  Google Scholar 

  41. C.-H. Wu, K.-W. Ng, W. Lee, D.-S. Lee and Y.-Y. Charng, Quantum noise and a low cosmic microwave background quadrupole, JCAP 02 (2007) 006 [astro-ph/0604292] [INSPIRE].

  42. T. Prokopec and G.I. Rigopoulos, Decoherence from Isocurvature perturbations in Inflation, JCAP 11 (2007) 029 [astro-ph/0612067] [INSPIRE].

  43. J.F. Koksma, T. Prokopec and M.G. Schmidt, Decoherence in an Interacting Quantum Field Theory: The Vacuum Case, Phys. Rev. D 81 (2010) 065030 [arXiv:0910.5733] [INSPIRE].

    ADS  Google Scholar 

  44. J.F. Koksma, T. Prokopec and M.G. Schmidt, Decoherence in an Interacting Quantum Field Theory: Thermal Case, Phys. Rev. D 83 (2011) 085011 [arXiv:1102.4713] [INSPIRE].

    ADS  Google Scholar 

  45. E. Nelson, Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP 03 (2016) 022 [arXiv:1601.03734] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. W.H. Zurek, Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?, Phys. Rev. D 24 (1981) 1516 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. W.H. Zurek, Environment induced superselection rules, Phys. Rev. D 26 (1982) 1862 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. W.H. Zurek, Decoherence and the Transition from Quantum to Classical, Physics Today 44 (1991) 36.

    Article  Google Scholar 

  49. W.H. Zurek, Decoherence, einselection and the quantum origins of the classical, Rev. Mod. Phys. 75 (2003) 715 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. W.H. Zurek, Decoherence and the transition from quantum to classicalRevisited, Los Alamos Science 27 (2002) 86 [quant-ph/0306072].

  51. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, arXiv:1502.01592 [INSPIRE].

  52. V. Assassi, D. Baumann, D. Green and L. McAllister, Planck-Suppressed Operators, JCAP 01 (2014) 033 [arXiv:1304.5226] [INSPIRE].

    ADS  Article  Google Scholar 

  53. D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav. 13 (1996) 377 [gr-qc/9504030] [INSPIRE].

  54. C. Kiefer and D. Polarski, Emergence of classicality for primordial fluctuations: Concepts and analogies, Annalen Phys. 7 (1998) 137 [gr-qc/9805014] [INSPIRE].

  55. M. Mijic, Particle production and classical condensates in de Sitter space, Phys. Rev. D 57 (1998) 2138 [gr-qc/9801094] [INSPIRE].

  56. O. Brodier and A.M. Ozorio de Almeida, Symplectic evolution of Wigner functions in Markovian open systems, Phys. Rev. E 69 (2004) 016204 [quant-ph/0304087].

  57. L. Diosi and C. Kiefer, Exact positivity of the Wigner and P functions of a Markovian open system, J. Phys. A 35 (2002) 2675 [quant-ph/0111139] [INSPIRE].

  58. H. Jiang, Y. Wang and S. Zhou, On the initial condition of inflationary fluctuations, JCAP 04 (2016) 041 [arXiv:1601.01179] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. S.-H. Ho, W. Li, F.-L. Lin and B. Ning, Quantum Decoherence with Holography, JHEP 01 (2014) 170 [arXiv:1309.5855] [INSPIRE].

    ADS  Article  Google Scholar 

  61. J. Liu, D.G. Wang and Y. Zhou, in preperation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chon-Man Sou.

Additional information

ArXiv ePrint: 1608.07909

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sou, CM. & Wang, Y. Cosmic decoherence: massive fields. J. High Energ. Phys. 2016, 72 (2016). https://doi.org/10.1007/JHEP10(2016)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2016)072

Keywords

  • Cosmology of Theories beyond the SM
  • Models of Quantum Gravity