Fermion masses through four-fermion condensates

Abstract

Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    K. Slagle, Y.-Z. You and C. Xu, Exotic quantum phase transitions of strongly interacting topological insulators, Phys. Rev. B 91 (2015) 115121 [arXiv:1409.7401] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z.Y. Meng and Z.-Y. Lu, Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states, Phys. Rev. B 93 (2016) 115150 [arXiv:1508.06389] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    V. Ayyar and S. Chandrasekharan, Massive fermions without fermion bilinear condensates, Phys. Rev. D 91 (2015) 065035 [arXiv:1410.6474] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    S. Catterall, Fermion mass without symmetry breaking, JHEP 01 (2016) 121 [arXiv:1510.04153] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    V. Ayyar and S. Chandrasekharan, Origin of fermion masses without spontaneous symmetry breaking, Phys. Rev. D 93 (2016) 081701 [arXiv:1511.09071] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z.Y. Meng and Z.-Y. Lu, Quantum critical point of Dirac fermion mass generation without spontaneous symmetry breaking, arXiv:1603.08376 [INSPIRE].

  7. [7]

    J. Stern, Two alternatives of spontaneous chiral symmetry breaking in QCD, hep-ph/9801282 [INSPIRE].

  8. [8]

    I.I. Kogan, A. Kovner and M.A. Shifman, Chiral symmetry breaking without bilinear condensates, unbroken axial Z N symmetry and exact QCD inequalities, Phys. Rev. D 59 (1999) 016001 [hep-ph/9807286] [INSPIRE].

  9. [9]

    T. Kanazawa, Chiral symmetry breaking with no bilinear condensate revisited, JHEP 10 (2015) 010 [arXiv:1507.06376] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].

  11. [11]

    S.R. Coleman and E. Witten, Chiral Symmetry Breakdown in Large-N Chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    T. Banks, On lattice definitions of chiral gauge theories and the problem of anomalies, Phys. Lett. B 272 (1991) 75 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    T. Banks and A. Dabholkar, Decoupling a fermion whose mass comes from a Yukawa coupling: Nonperturbative considerations, Phys. Rev. D 46 (1992) 4016 [hep-lat/9204017] [INSPIRE].

  14. [14]

    A. Hasenfratz and T. Neuhaus, Nonperturbative Study of the Strongly Coupled Scalar Fermion Model, Phys. Lett. B 220 (1989) 435 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. Hasenfratz, W.-q. Liu and T. Neuhaus, Phase Structure and Critical Points in a Scalar Fermion Model, Phys. Lett. B 236 (1990) 339 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    I.-H. Lee, J. Shigemitsu and R.E. Shrock, Study of Different Lattice Formulations of a Yukawa Model With a Real Scalar Field, Nucl. Phys. B 334 (1990) 265 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    W. Bock, A.K. De, K. Jansen, J. Jersak, T. Neuhaus and J. Smit, Phase Diagram of a Lattice SU(2) × SU(2) Scalar Fermion Model With Naive and Wilson Fermions, Nucl. Phys. B 344 (1990) 207 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    W. Bock and A.K. De, Unquenched Investigation of Fermion Masses in a Chiral Fermion Theory on the Lattice, Phys. Lett. B 245 (1990) 207 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M.F.L. Golterman and D.N. Petcher, Decoupling of Doublers and the Phase Diagram of Lattice Chiral Fermions for Strong Wilson-Yukawa Coupling, Phys. Lett. B 247 (1990) 370 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    P. Gerhold and K. Jansen, The Phase structure of a chirally invariant lattice Higgs-Yukawa model — numerical simulations, JHEP 10 (2007) 001 [arXiv:0707.3849] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Bulava et al., Study of the Higgs-Yukawa theory in the strong-Yukawa coupling regime, PoS(LATTICE 2011)075 [arXiv:1111.4544] [INSPIRE].

  22. [22]

    J. Shigemitsu, Higgs-Yukawa chiral models, Nucl. Phys. Proc. Suppl. B 20 (1991) 515.

    ADS  Article  Google Scholar 

  23. [23]

    C. Wu, Competing Orders in One-Dimensional Spin 3/2 Fermionic Systems, Phys. Rev. Lett. 95 (2005) 266404 [cond-mat/0409247] [INSPIRE].

  24. [24]

    E. Eichten and J. Preskill, Chiral Gauge Theories on the Lattice, Nucl. Phys. B 268 (1986) 179 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M.F.L. Golterman, D.N. Petcher and E. Rivas, Absence of chiral fermions in the Eichten-Preskill model, Nucl. Phys. B 395 (1993) 596 [hep-lat/9206010] [INSPIRE].

  26. [26]

    J.L. Alonso, P. Boucaud, V. Martin-Mayor and A.J. van der Sijs, Phase diagram and quasiparticles of a lattice SU(2) scalar fermion model in (2+1)-dimensions, Phys. Rev. D 61 (2000) 034501 [cond-mat/9907288] [INSPIRE].

  27. [27]

    T. Senthil, Symmetry Protected Topological phases of Quantum Matter, Ann. Rev. Condensed Matter Phys. 6 (2015) 299 [arXiv:1405.4015] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B 288 (1992) 342 [hep-lat/9206013] [INSPIRE].

  30. [30]

    M.F.L. Golterman, K. Jansen and D.B. Kaplan, Chern-Simons currents and chiral fermions on the lattice, Phys. Lett. B 301 (1993) 219 [hep-lat/9209003] [INSPIRE].

  31. [31]

    D.B. Kaplan and M. Schmaltz, Supersymmetric Yang-Mills theories from domain wall fermions, Chin. J. Phys. 38 (2000) 543 [hep-lat/0002030] [INSPIRE].

  32. [32]

    L. Fidkowski and A. Kitaev, The effects of interactions on the topological classification of free fermion systems, Phys. Rev. B 81 (2010) 134509 [arXiv:0904.2197] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011) 075103 [arXiv:1008.4138].

    ADS  Article  Google Scholar 

  34. [34]

    X.-L. Qi, A new class of (2+1)-dimensional topological superconductors with \( {\mathbb{Z}}_8 \) topological classification, New J. Phys. 15 (2013) 065002 [arXiv:1202.3983].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    L. Fidkowski, X. Chen and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model, Phys. Rev. X 3 (2013) 041016 [arXiv:1305.5851] [INSPIRE].

    Article  Google Scholar 

  36. [36]

    T. Morimoto, A. Furusaki and C. Mudry, Breakdown of the topological classification \( \mathbb{Z} \) for gapped phases of noninteracting fermions by quartic interactions, Phys. Rev. B 92 (2015) 125104 [arXiv:1505.06341] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89 (2014) 195124 [arXiv:1401.1142] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    X.-G. Wen, A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model, Chin. Phys. Lett. 30 (2013) 111101 [arXiv:1305.1045] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    Y.-Z. You and C. Xu, Interacting Topological Insulator and Emergent Grand Unified Theory, Phys. Rev. B 91 (2015) 125147 [arXiv:1412.4784] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    Y. You, Y. BenTov and C. Xu, Interacting Topological Superconductors and possible Origin of 16n Chiral Fermions in the Standard Model, arXiv:1402.4151 [INSPIRE].

  41. [41]

    Y. BenTov and A. Zee, Origin of families and SO(18) grand unification, Phys. Rev. D 93 (2016) 065036 [arXiv:1505.04312] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    S. Chandrasekharan, The fermion bag approach to lattice field theories, Phys. Rev. D 82 (2010) 025007 [arXiv:0910.5736] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    H.R. Moshfegh and M. Ghazanfari Mojarrad, Strange baryonic matter in the Thomas-Fermi theory, Eur. Phys. J. A 49 (2013) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    H.S. Sharatchandra, H.J. Thun and P. Weisz, Susskind Fermions on a Euclidean Lattice, Nucl. Phys. B 192 (1981) 205 [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    M.F.L. Golterman and J. Smit, Selfenergy and Flavor Interpretation of Staggered Fermions, Nucl. Phys. B 245 (1984) 61 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    C. van den Doel and J. Smit, Dynamical Symmetry Breaking in Two Flavor SU(N ) and SO(N ) Lattice Gauge Theories, Nucl. Phys. B 228 (1983) 122 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    S. Chandrasekharan, Fermion Bags and A New Origin for a Fermion Mass, PoS(LATTICE2014)309 [arXiv:1412.3532] [INSPIRE].

  48. [48]

    M.F. Atiyah and I.M. Singer, The index of elliptic operators. 5, Annals Math. 93 (1971) 139 [INSPIRE].

  49. [49]

    J. Smit and J.C. Vink, Remnants of the Index Theorem on the Lattice, Nucl. Phys. B 286 (1987) 485 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    D.H. Adams, Theoretical foundation for the Index Theorem on the lattice with staggered fermions, Phys. Rev. Lett. 104 (2010) 141602 [arXiv:0912.2850] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. [52]

    R. Pordes et al., The Open Science Grid, J. Phys. Conf. Ser. 78 (2007) 012057 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi and F. Wurthwein, The Pilot Way to Grid Resources Using glideinWMS, in proceedings of WRI World Congress on Computer Science and Information Engineering 2 (2009) 428.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Venkitesh Ayyar.

Additional information

ArXiv ePrint: 1606.06312v1

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayyar, V., Chandrasekharan, S. Fermion masses through four-fermion condensates. J. High Energ. Phys. 2016, 58 (2016). https://doi.org/10.1007/JHEP10(2016)058

Download citation

Keywords

  • Lattice Quantum Field Theory
  • Spontaneous Symmetry Breaking
  • Nonperturbative Effects