Journal of High Energy Physics

, 2014:159

Some remarks on Lefschetz thimbles and complex Langevin dynamics

  • Gert Aarts
  • Lorenzo Bongiovanni
  • Erhard Seiler
  • Dénes Sexty
Open Access
Article

Abstract

Lefschetz thimbles and complex Langevin dynamics both provide a means to tackle the numerical sign problem prevalent in theories with a complex weight in the partition function, e.g. due to nonzero chemical potential. Here we collect some findings for the quartic model, and for U(1) and SU(2) models in the presence of a determinant, which have some features not discussed before, due to a singular drift. We find evidence for a relation between classical runaways and stable thimbles, and give an example of a degenerate fixed point. We typically find that the distributions sampled in complex Langevin dynamics are related to the thimble(s), but with some important caveats, for instance due to the presence of unstable fixed points in the Langevin dynamics.

Keywords

Lattice QCD Lattice Quantum Field Theory 

References

  1. [1]
    G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential, PoS(LATTICE 2012)017 [arXiv:1302.3028] [INSPIRE].
  2. [2]
    G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty and I.-O. Stamatescu, Controlling complex Langevin dynamics at finite density, Eur. Phys. J. A 49 (2013) 89 [arXiv:1303.6425] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Quantum field theories on the Lefschetz thimble, Non-perturbative fermion mass generation in Wilson lattice QCD 197 (2013) [arXiv:1312.1052] [INSPIRE].
  4. [4]
    G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    J.R. Klauder, Stochastic quantization, in Recent Developments in High-Energy Physics, H. Mitter and C.B. Lang eds., Springer-Verlag, Wien, 1983, pg.351.Google Scholar
  6. [6]
    J.R. Klauder, A Langevin approach to fermion and quantum spin correlation functions, J. Phys. A: Math. Gen. 16 (1983) L317.ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.R. Klauder, Coherent State Langevin Equations for Canonical Quantum Systems With Applications to the Quantized Hall Effect, Phys. Rev. A 29 (1984) 2036 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P.H. Damgaard and H. Huffel, Stochastic Quantization, Phys. Rept. 152 (1987) 227 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. Aarts and I.-O. Stamatescu, Stochastic quantization at finite chemical potential, JHEP 09 (2008) 018 [arXiv:0807.1597] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601 [arXiv:0810.2089] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics, Phys. Lett. B 687 (2010) 154 [arXiv:0912.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Aarts, E. Seiler and I.-O. Stamatescu, The Complex Langevin method: When can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].ADSGoogle Scholar
  13. [13]
    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin: Etiology and Diagnostics of its Main Problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Aarts and K. Splittorff, Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential, JHEP 08 (2010) 017 [arXiv:1006.0332] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213 [arXiv:1211.3709] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, Phys. Lett. B 729 (2014) 108 [arXiv:1307.7748] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty and I.-O. Stamatescu, Adaptive gauge cooling for complex Langevin dynamics, arXiv:1311.1056 [INSPIRE].
  18. [18]
    G. Aarts, F.A. James, J.M. Pawlowski, E. Seiler, D. Sexty et al., Stability of complex Langevin dynamics in effective models, JHEP 03 (2013) 073 [arXiv:1212.5231] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Duncan and M. Niedermaier, On the temporal breakdown of the complex Langevin method, arXiv:1205.0307 [INSPIRE].
  20. [20]
    G. Aarts, P. Giudice and E. Seiler, Localised distributions and criteria for correctness in complex Langevin dynamics, Annals Phys. 337 (2013) 238 [arXiv:1306.3075] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Fromm, J. Langelage, S. Lottini and O. Philipsen, The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP 01 (2012) 042 [arXiv:1111.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, Onset Transition to Cold Nuclear Matter from Lattice QCD with Heavy Quarks, Phys. Rev. Lett. 110 (2013) 122001 [arXiv:1207.3005] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Langelage, M. Neuman and O. Philipsen, Heavy dense QCD and nuclear matter from an effective lattice theory, JHEP 09 (2014) 131 [arXiv:1403.4162] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Mollgaard and K. Splittorff, Complex Langevin Dynamics for chiral Random Matrix Theory, Phys. Rev. D 88 (2013) 116007 [arXiv:1309.4335] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Greensite, Comparison of complex Langevin and mean field methods applied to effective Polyakov line models, arXiv:1406.4558 [INSPIRE].
  26. [26]
    E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].
  27. [27]
    E. Witten, A New Look At The Path Integral Of Quantum Mechanics, arXiv:1009.6032 [INSPIRE].
  28. [28]
    AuroraScience collaboration, M. Cristoforetti, F. Di Renzo and L. Scorzato, New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, MonteCarlo simulations on the Lefschetz thimble: Taming the sign problem, Phys. Rev. D 88 (2013) 051501 [arXiv:1303.7204] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Mukherjee, M. Cristoforetti and L. Scorzato, Metropolis MonteCarlo integration on the Lefschetz thimble: Application to a one-plaquette model, Phys. Rev. D 88 (2013) 051502 [arXiv:1308.0233] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu et al., Hybrid Monte Carlo on Lefschetz thimbles - A study of the residual sign problem, JHEP 10 (2013) 147 [arXiv:1309.4371] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Cristoforetti, F. Di Renzo, G. Eruzzi, A. Mukherjee, C. Schmidt et al., An efficient method to compute the residual phase on a Lefschetz thimble, Phys. Rev. D 89 (2014) 114505 [arXiv:1403.5637] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Mukherjee and M. Cristoforetti, Lefschetz thimble Monte Carlo for many body theories: application to the repulsive Hubbard model away from half filling, arXiv:1403.5680 [INSPIRE].
  34. [34]
    Y. Tanizaki and T. Koike, Real-time Feynman path integral with Picard-Lefschetz theory and its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    G. Aarts, Lefschetz thimbles and stochastic quantization: Complex actions in the complex plane, Phys. Rev. D 88 (2013) 094501 [arXiv:1308.4811] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Guralnik and Z. Guralnik, Complexified path integrals and the phases of quantum field theory, Annals Phys. 325 (2010) 2486 [arXiv:0710.1256] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  37. [37]
    D.D. Ferrante, G.S. Guralnik, Z. Guralnik and C. Pehlevan, Complex Path Integrals and the Space of Theories, arXiv:1301.4233 [INSPIRE].
  38. [38]
    G. Basar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Cherman, D. Dorigoni and M. Ünsal, Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, arXiv:1403.1277 [INSPIRE].
  40. [40]
    J. Berges and D. Sexty, Real-time gauge theory simulations from stochastic quantization with optimized updating, Nucl. Phys. B 799 (2008) 306 [arXiv:0708.0779] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M.V. Berry, Stokesphenomenon; smoothing a Victorian discontinuity, Inst. Hautes Études Sci. Publ. Math. 68 (1998) 211.CrossRefGoogle Scholar
  42. [42]
    J. Berges and I.-O. Stamatescu, Simulating nonequilibrium quantum fields with stochastic quantization techniques, Phys. Rev. Lett. 95 (2005) 202003 [hep-lat/0508030] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Berges, S. Borsányi, D. Sexty and I.-O. Stamatescu, Lattice simulations of real-time quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].ADSGoogle Scholar
  44. [44]
    L.L. Salcedo, Spurious solutions of the complex Langevin equation, Phys. Lett. B 305 (1993) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Pehlevan and G. Guralnik, Complex Langevin Equations and Schwinger-Dyson Equations, Nucl. Phys. B 811 (2009) 519 [arXiv:0710.3756] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    G. Guralnik and C. Pehlevan, Effective Potential for Complex Langevin Equations, Nucl. Phys. B 822 (2009) 349 [arXiv:0902.1503] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Gert Aarts
    • 1
  • Lorenzo Bongiovanni
    • 1
  • Erhard Seiler
    • 2
  • Dénes Sexty
    • 3
  1. 1.Department of Physics, College of ScienceSwansea UniversitySwanseaUnited Kingdom
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  3. 3.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations