Advertisement

Ortho-positronium observation in the Double Chooz experiment

  • The Double Chooz collaboration
  • Y. Abe
  • J. C. dos Anjos
  • J. C. Barriere
  • E. Baussan
  • I. Bekman
  • M. Bergevin
  • T. J. C. Bezerra
  • L. Bezrukov
  • E. Blucher
  • C. Buck
  • J. Busenitz
  • A. Cabrera
  • E. Caden
  • L. Camilleri
  • R. Carr
  • M. Cerrada
  • P.-J. Chang
  • E. Chauveau
  • P. Chimenti
  • A. P. Collin
  • E. Conover
  • J. M. Conrad
  • J. I. Crespo-Anadón
  • K. Crum
  • A. S. Cucoanes
  • E. Damon
  • J. V. Dawson
  • J. Dhooghe
  • D. Dietrich
  • Z. Djurcic
  • M. Dracos
  • M. Elnimr
  • A. Etenko
  • M. Fallot
  • F. von Feilitzsch
  • J. Felde
  • S. M. Fernandes
  • V. Fischer
  • D. Franco
  • M. Franke
  • H. Furuta
  • I. Gil-Botella
  • L. Giot
  • M. Göger-Neff
  • L. F. G. Gonzalez
  • L. Goodenough
  • M. C. Goodman
  • C. Grant
  • N. Haag
  • T. Hara
  • J. Haser
  • M. Hofmann
  • G. A. Horton-Smith
  • A. Hourlier
  • M. Ishitsuka
  • J. Jochum
  • C. JolletEmail author
  • F. Kaether
  • L. N. Kalousis
  • Y. Kamyshkov
  • D. M. Kaplan
  • T. Kawasaki
  • E. Kemp
  • H. de Kerret
  • D. Kryn
  • M. Kuze
  • T. Lachenmaier
  • C. E. Lane
  • T. Lasserre
  • A. Letourneau
  • D. Lhuillier
  • H. P. LimaJr.
  • M. Lindner
  • J. M. López-Castaño
  • J. M. LoSecco
  • B. Lubsandorzhiev
  • S. Lucht
  • J. Maeda
  • C. Mariani
  • J. Maricic
  • J. Martino
  • T. Matsubara
  • G. Mention
  • A. Meregaglia
  • T. Miletic
  • R. Milincic
  • A. Minotti
  • Y. Nagasaka
  • Y. Nikitenko
  • P. Novella
  • L. Oberauer
  • M. Obolensky
  • A. Onillon
  • A. Osborn
  • C. Palomares
  • I. M. Pepe
  • S. Perasso
  • P. Pfahler
  • A. Porta
  • G. Pronost
  • J. Reichenbacher
  • B. Reinhold
  • M. Röhling
  • R. Roncin
  • S. Roth
  • B. Rybolt
  • Y. Sakamoto
  • R. Santorelli
  • A. C. Schilithz
  • S. Schönert
  • S. Schoppmann
  • M. H. Shaevitz
  • R. Sharankova
  • S. Shimojima
  • D. Shrestha
  • V. Sibille
  • V. Sinev
  • M. Skorokhvatov
  • E. Smith
  • J. Spitz
  • A. Stahl
  • I. Stancu
  • L. F. F. Stokes
  • M. Strait
  • A. Stüken
  • F. Suekane
  • S. Sukhotin
  • T. Sumiyoshi
  • Y. Sun
  • R. Svoboda
  • K. Terao
  • A. Tonazzo
  • H. H. Trinh Thi
  • G. Valdiviesso
  • N. Vassilopoulos
  • C. Veyssiere
  • M. Vivier
  • S. Wagner
  • N. Walsh
  • H. Watanabe
  • C. Wiebusch
  • L. Winslow
  • M. Wurm
  • G. Yang
  • F. Yermia
  • V. Zimmer
Open Access
Article

Abstract

The Double Chooz experiment measures the neutrino mixing angle θ 13 by detecting reactor \( {\overline{\nu}}_e \) via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would profit from a positron/electron discrimination, if feasible in large detector, to suppress the remaining background. Standard particle identification, based on particle dependent time profile of photon emission in liquid scintillator, can not be used given the identical mass of the two particles. However, the positron annihilation is sometimes delayed by the ortho-positronium (o-Ps) metastable state formation, which induces a pulse shape distortion that could be used for positron identification. In this paper we report on the first observation of positronium formation in a large liquid scintillator detector based on pulse shape analysis of single events. The o-Ps formation fraction and its lifetime were measured, finding the values of 44 % ±12 % (sys.) ±5 % (stat.) and 3.68 ns ±0.17 ns (sys.) ±0.15 ns (stat.) respectively, in agreement with the results obtained with a dedicated positron annihilation lifetime spectroscopy setup.

Keywords

Neutrino Detectors and Telescopes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, arXiv:1406.7763 [INSPIRE].
  2. [2]
    Double CHOOZ collaboration, Y. Abe et al., First measurement of θ 13 from delayed neutron capture on hydrogen in the Double CHOOZ experiment, Phys. Lett. B 723 (2013) 66 [arXiv:1301.2948] [INSPIRE].Google Scholar
  3. [3]
    Double CHOOZ collaboration, Y. Abe et al., Background-independent measurement of θ 13 in Double CHOOZ, Phys. Lett. B 735 (2014) 51 [arXiv:1401.5981] [INSPIRE].Google Scholar
  4. [4]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    G. Ranucci, A. Goretti and P. Lombardi, Pulse-shape discrimination of liquid scintillators, Nucl. Instrum. Meth. A 412 (1998) 374 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Franco, G. Consolati and D. Trezzi, Positronium signature in organic liquid scintillators for neutrino experiments, Phys. Rev. C 83 (2011) 015504 [arXiv:1011.5736] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.J. Ache, Positronium and muonium chemistry, Adv. Chem. 175 (1979) 1, American Chemical Society, U.S.A. (1979).Google Scholar
  9. [9]
    Y. Kino et al., Positron annihilation in liquid scintillator for electron antineutrino detection, J. Nucl. Radiochem. Sci. 1 (2000) 63.CrossRefGoogle Scholar
  10. [10]
    G. Consolati et al., Characterization of positronium properties in doped liquid scintillators, Phys. Rev. C 88 (2013) 065502 [arXiv:1308.0493] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Borexino collaboration, G. Bellini et al., First evidence of pep solar neutrinos by direct detection in Borexino, Phys. Rev. Lett. 108 (2012) 051302 [arXiv:1110.3230] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].Google Scholar
  13. [13]
    C. Aberle et al., Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection, 2012 JINST 7 P06008 [arXiv:1112.5941] [INSPIRE].
  14. [14]
    C. Aberle, C. Buck, F.X. Hartmann and S. Schonert, Light yield and energy transfer in a new Gd-loaded liquid scintillator, Chem. Phys. Lett. 516 (2011) 257 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Abe et al., The waveform digitiser of the Double CHOOZ experiment: performance and quantisation effects on photomultiplier tube signals, 2013 JINST 8 P08015 [arXiv:1307.4917] [INSPIRE].
  16. [16]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  17. [17]
    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • The Double Chooz collaboration
  • Y. Abe
    • 27
  • J. C. dos Anjos
    • 5
  • J. C. Barriere
    • 14
  • E. Baussan
    • 22
  • I. Bekman
    • 1
  • M. Bergevin
    • 9
  • T. J. C. Bezerra
    • 25
  • L. Bezrukov
    • 13
  • E. Blucher
    • 6
  • C. Buck
    • 19
  • J. Busenitz
    • 2
  • A. Cabrera
    • 4
  • E. Caden
    • 10
  • L. Camilleri
    • 8
  • R. Carr
    • 8
  • M. Cerrada
    • 7
  • P.-J. Chang
    • 15
  • E. Chauveau
    • 25
  • P. Chimenti
    • 31
  • A. P. Collin
    • 19
  • E. Conover
    • 6
  • J. M. Conrad
    • 18
  • J. I. Crespo-Anadón
    • 7
  • K. Crum
    • 6
  • A. S. Cucoanes
    • 23
  • E. Damon
    • 10
  • J. V. Dawson
    • 4
  • J. Dhooghe
    • 9
  • D. Dietrich
    • 30
  • Z. Djurcic
    • 3
  • M. Dracos
    • 22
  • M. Elnimr
    • 2
  • A. Etenko
    • 17
  • M. Fallot
    • 23
  • F. von Feilitzsch
    • 29
  • J. Felde
    • 9
  • S. M. Fernandes
    • 2
  • V. Fischer
    • 14
  • D. Franco
    • 4
  • M. Franke
    • 29
  • H. Furuta
    • 25
  • I. Gil-Botella
    • 7
  • L. Giot
    • 23
  • M. Göger-Neff
    • 29
  • L. F. G. Gonzalez
    • 32
  • L. Goodenough
    • 3
  • M. C. Goodman
    • 3
  • C. Grant
    • 9
  • N. Haag
    • 29
  • T. Hara
    • 16
  • J. Haser
    • 19
  • M. Hofmann
    • 29
  • G. A. Horton-Smith
    • 15
  • A. Hourlier
    • 4
  • M. Ishitsuka
    • 27
  • J. Jochum
    • 30
  • C. Jollet
    • 22
    Email author
  • F. Kaether
    • 19
  • L. N. Kalousis
    • 33
  • Y. Kamyshkov
    • 24
  • D. M. Kaplan
    • 12
  • T. Kawasaki
    • 20
  • E. Kemp
    • 32
  • H. de Kerret
    • 4
  • D. Kryn
    • 4
  • M. Kuze
    • 27
  • T. Lachenmaier
    • 30
  • C. E. Lane
    • 10
  • T. Lasserre
    • 14
    • 4
  • A. Letourneau
    • 14
  • D. Lhuillier
    • 14
  • H. P. LimaJr.
    • 5
  • M. Lindner
    • 19
  • J. M. López-Castaño
    • 7
  • J. M. LoSecco
    • 21
  • B. Lubsandorzhiev
    • 13
  • S. Lucht
    • 1
  • J. Maeda
    • 28
    • 34
  • C. Mariani
    • 33
  • J. Maricic
    • 10
    • 35
  • J. Martino
    • 23
  • T. Matsubara
    • 28
  • G. Mention
    • 14
  • A. Meregaglia
    • 22
  • T. Miletic
    • 10
  • R. Milincic
    • 10
    • 35
  • A. Minotti
    • 22
  • Y. Nagasaka
    • 11
  • Y. Nikitenko
    • 13
  • P. Novella
    • 4
  • L. Oberauer
    • 29
  • M. Obolensky
    • 4
  • A. Onillon
    • 23
  • A. Osborn
    • 24
  • C. Palomares
    • 7
  • I. M. Pepe
    • 5
  • S. Perasso
    • 4
  • P. Pfahler
    • 29
  • A. Porta
    • 23
  • G. Pronost
    • 23
  • J. Reichenbacher
    • 2
  • B. Reinhold
    • 19
    • 35
  • M. Röhling
    • 30
  • R. Roncin
    • 4
  • S. Roth
    • 1
  • B. Rybolt
    • 24
  • Y. Sakamoto
    • 26
  • R. Santorelli
    • 7
  • A. C. Schilithz
    • 5
  • S. Schönert
    • 29
  • S. Schoppmann
    • 1
  • M. H. Shaevitz
    • 8
  • R. Sharankova
    • 27
  • S. Shimojima
    • 28
  • D. Shrestha
    • 15
  • V. Sibille
    • 14
  • V. Sinev
    • 13
  • M. Skorokhvatov
    • 17
  • E. Smith
    • 10
  • J. Spitz
    • 18
  • A. Stahl
    • 1
  • I. Stancu
    • 2
  • L. F. F. Stokes
    • 30
  • M. Strait
    • 6
  • A. Stüken
    • 1
  • F. Suekane
    • 25
  • S. Sukhotin
    • 17
  • T. Sumiyoshi
    • 28
  • Y. Sun
    • 2
    • 35
  • R. Svoboda
    • 9
  • K. Terao
    • 18
  • A. Tonazzo
    • 4
  • H. H. Trinh Thi
    • 29
  • G. Valdiviesso
    • 5
  • N. Vassilopoulos
    • 22
  • C. Veyssiere
    • 14
  • M. Vivier
    • 14
  • S. Wagner
    • 19
  • N. Walsh
    • 9
  • H. Watanabe
    • 19
  • C. Wiebusch
    • 1
  • L. Winslow
    • 18
  • M. Wurm
    • 30
    • 36
  • G. Yang
    • 3
    • 12
  • F. Yermia
    • 23
  • V. Zimmer
    • 29
  1. 1.III. Physikalisches InstitutRWTH Aachen UniversityAachenGermany
  2. 2.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaUnited Kingdom
  3. 3.Argonne National LaboratoryArgonneUnited Kingdom
  4. 4.AstroParticule et CosmologieUniversité Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  5. 5.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  6. 6.The Enrico Fermi InstituteThe University of ChicagoChicagoUnited Kingdom
  7. 7.Centro de Investigaciones EnergéticasMedioambientales y Tecnológicas, CIEMATMadridSpain
  8. 8.Columbia University; New YorkNew YorkUnited Kingdom
  9. 9.University of CaliforniaDavisUnited Kingdom
  10. 10.Department of PhysicsDrexel UniversityPhiladelphiaUnited Kingdom
  11. 11.Hiroshima Institute of TechnologyHiroshimaJapan
  12. 12.Department of PhysicsIllinois Institute of TechnologyChicagoUnited Kingdom
  13. 13.Institute of Nuclear Research of the Russian Academy of SciencesMoscowRussia
  14. 14.Commissariat à l’Energie Atomique et aux Energies AlternativesCentre de Saclay, IRFUGif-sur-YvetteFrance
  15. 15.Department of PhysicsKansas State UniversityManhattanUnited Kingdom
  16. 16.Department of PhysicsKobe UniversityKobeJapan
  17. 17.NRC Kurchatov InstituteMoscowRussia
  18. 18.Massachusetts Institute of TechnologyCambridgeUnited Kingdom
  19. 19.Max-Planck-Institut für KernphysikHeidelbergGermany
  20. 20.Department of PhysicsNiigata UniversityNiigataJapan
  21. 21.University of Notre DameNotre DameUnited Kingdom
  22. 22.IPHC, Université de Strasbourg, CNRS/IN2P3StrasbourgFrance
  23. 23.SUBATECH, CNRS/IN2P3Université de Nantes, Ecole des Mines de NantesNantesFrance
  24. 24.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUnited Kingdom
  25. 25.Research Center for Neutrino ScienceTohoku UniversitySendaiJapan
  26. 26.Tohoku Gakuin UniversitySendaiJapan
  27. 27.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  28. 28.Department of PhysicsTokyo Metropolitan UniversityTokyoJapan
  29. 29.Physik DepartmentTechnische Universität MünchenGarchingGermany
  30. 30.Kepler Center for Astro and Particle PhysicsUniversität TübingenTübingenGermany
  31. 31.Universidade Federal do ABC, UFABCSanto AndréBrazil
  32. 32.Universidade Estadual de Campinas-UNICAMPCampinasBrazil
  33. 33.Center for Neutrino PhysicsVirginia Tech, BlacksburgVirginiaUnited Kingdom
  34. 34.Department of PhysicsKobe UniversityKobeJapan
  35. 35.Department of Physics & AstronomyUniversity of Hawaii at ManoaHonoluluUSA
  36. 36.Institut für Physik and Excellence Cluster PRISMAJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations