S.K. Paul and A. Khare, Charged vortices in abelian Higgs model with Chern-Simons term, Phys. Lett.
B 174 (1986) 420 [Erratum ibid.
177B (1986) 453] [INSPIRE].
R. Jackiw and E.J. Weinberg, Selfdual Chern-Simons vortices, Phys. Rev. Lett.
64 (1990) 2234 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.P. Jatkar and A. Khare, Peculiar charged vortices in Higgs models with pure Chern-Simons term, Phys. Lett.
B 236 (1990) 283 [INSPIRE].
ADS
Article
Google Scholar
S.K. Paul and A. Khare, Chern-Simons term by spontaneous symmetry breaking in an abelian Higgs model, Phys. Lett.
B 193 (1987) 253 [Erratum ibid.
B 196 (1987) 571] [INSPIRE].
R. Banerjee and P. Mukherjee, Spin of Chern-Simons vortices, Nucl. Phys.
B 478 (1996) 235 [hep-th/9605226] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Hong, Y. Kim and P.Y. Pac, On the multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett.
64 (1990) 2230 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y. Kim and K.-M. Lee, Vortex dynamics in selfdual Chern-Simons Higgs systems, Phys. Rev.
D 49 (1994) 2041 [hep-th/9211035] [INSPIRE].
ADS
Google Scholar
L.-B. Fu, Y.-S. Duan and H. Zhang, Evolution of the Chern-Simons vortices, Phys. Rev.
D 61 (2000) 045004 [hep-th/0112033] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Abou-Zeid and H. Samtleben, Chern-Simons vortices in supergravity, Phys. Rev.
D 65 (2002) 085016 [hep-th/0112035] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.H. Schwarz, Superconformal Chern-Simons theories, JHEP
11 (2004) 078 [hep-th/0411077] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Collie and D. Tong, The dynamics of Chern-Simons vortices, Phys. Rev.
D 78 (2008) 065013 [arXiv:0805.0602] [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Navarro-Lerida, E. Radu and D.H. Tchrakian, Non-abelian Chern-Simons-Higgs solutions in (2 + 1) dimensions, Phys. Rev.
D 79 (2009) 065036 [arXiv:0811.3524] [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Bazeia, E. da Hora, C. dos Santos and R. Menezes, Generalized self-dual Chern-Simons vortices, Phys. Rev.
D 81 (2010) 125014 [arXiv:1006.3955] [INSPIRE].
ADS
Google Scholar
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.
38 (1999) 1113 [hep-th/9711200] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.
2 (1998) 253 [hep-th/9802150] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev.
D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
ADS
Google Scholar
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.
101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
ADS
Article
Google Scholar
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP
12 (2008) 015 [arXiv:0810.1563] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett.
103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP
02 (2010) 060 [arXiv:0912.0512] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev.
D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett.
103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett.
B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].
ADS
Article
Google Scholar
K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev.
D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].
ADS
Google Scholar
T. Albash and C.V. Johnson, A holographic superconductor in an external magnetic field, JHEP
09 (2008) 121 [arXiv:0804.3466] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Montull, O. Pujolàs, A. Salvio and P.J. Silva, Magnetic response in the holographic insulator/superconductor transition, JHEP
04 (2012) 135 [arXiv:1202.0006] [INSPIRE].
ADS
Article
Google Scholar
T. Albash and C.V. Johnson, Vortex and droplet engineering in holographic superconductors, Phys. Rev.
D 80 (2009) 126009 [arXiv:0906.1795] [INSPIRE].
ADS
Google Scholar
M. Montull, A. Pomarol and P.J. Silva, The holographic superconductor vortex, Phys. Rev. Lett.
103 (2009) 091601 [arXiv:0906.2396] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Roychowdhury, Vortices and supercurrent in AdS Born-Infeld gravity, arXiv:1403.0085 [INSPIRE].
N. Banerjee, S. Dutta and D. Roychowdhury, Chern-Simons superconductor, arXiv:1311.7640 [INSPIRE].
M. Cyrot, Ginzburg-Landau theory for superconductors, Rep. Prog. Phys.
36 (1973) 103.
ADS
Article
Google Scholar
M. Tinkham, Introduction to superconductivity, 2nd edition, Dover, New York U.S.A. (1996).
Google Scholar
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.
26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Reuter, A mechanism generating axion hair for Kerr black holes, Class. Quant. Grav.
9 (1992) 751 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.J. Duncan, N. Kaloper and K.A. Olive, Axion hair and dynamical torsion from anomalies, Nucl. Phys.
B 387 (1992) 215 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Clement and D. Gal’tsov, Bertotti-Robinson type solutions to dilaton-axion gravity, Phys. Rev.
D 63 (2001) 124011 [gr-qc/0102025] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Li and J.-R. Ren, Holographic dual of linear dilaton black hole in Einstein-Maxwell-dilaton-axion gravity, JHEP
09 (2010) 039 [arXiv:1009.3139] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Smolic, Holography and hydrodynamics for EMD theory with two Maxwell fields, JHEP
03 (2013) 124 [arXiv:1301.6020] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Sonner and P.K. Townsend, Axion-dilaton domain walls and fake supergravity, Class. Quant. Grav.
24 (2007) 3479 [hep-th/0703276] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.-P. Derendinger, P.M. Petropoulos and N. Prezas, Axionic symmetry gaugings in N =4 supergravities and their higher-dimensional origin, Nucl. Phys.
B 785 (2007) 115 [arXiv:0705.0008] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP
02 (2012) 053 [arXiv:1105.3740] [INSPIRE].
ADS
Article
MATH
Google Scholar
H. Baer, A.D. Box and H. Summy, Mainly axion cold dark matter in the minimal supergravity model, JHEP
08 (2009) 080 [arXiv:0906.2595] [INSPIRE].
ADS
Article
Google Scholar
H. Baer and A.D. Box, Fine-tuning favors mixed axion/axino cold dark matter over neutralinos in the minimal supergravity model, Eur. Phys. J.
C 68 (2010) 523 [arXiv:0910.0333] [INSPIRE].
ADS
Article
Google Scholar
G. Tallarita and S. Thomas, Maxwell-Chern-Simons vortices and holographic superconductors, JHEP
12 (2010) 090 [arXiv:1007.4163] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP
08 (2011) 140 [arXiv:1106.2004] [INSPIRE].
ADS
Article
MATH
Google Scholar
K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev.
D 78 (2008) 106006 [arXiv:0809.3079] [INSPIRE].
ADS
MathSciNet
Google Scholar
H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, Characteristic length of a holographic superconductor with d-wave gap, Phys. Rev.
D 82 (2010) 126014 [arXiv:1006.5483] [INSPIRE].
ADS
Google Scholar
H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, Superconducting coherence length and magnetic penetration depth of a p-wave holographic superconductor, Phys. Rev.
D 81 (2010) 106001 [arXiv:0912.4928] [INSPIRE].
ADS
Google Scholar
G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].
P.A. Horvathy, Lectures on (abelian) Chern-Simons vortices, arXiv:0704.3220 [INSPIRE].
P.A. Horvathy and P. Zhang, Vortices in (abelian) Chern-Simons gauge theory, Phys. Rept.
481 (2009) 83 [arXiv:0811.2094] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar