Skip to main content

Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator

An Erratum to this article was published on 18 November 2014

Abstract

A new two-loop radiative Majorana neutrino mass model is constructed from the gauge-invariant effective operator L i L j Q k d c Q l d c ϵ ik ϵ jl that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as μeγ, μeee, and μNeN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.

This is a preview of subscription content, access via your institution.

References

  1. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Article  Google Scholar 

  2. T. Yanagida, in Proceedings of the Workshop on The Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.

  3. S.L. Glashow, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980), pg. 687.

  4. M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland, Amsterdam The Netherlands (1979), pg. 315.

  5. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  Article  Google Scholar 

  6. J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

    ADS  Google Scholar 

  7. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].

    ADS  Google Scholar 

  8. P.B. Dev and A. Pilaftsis, Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].

    ADS  Google Scholar 

  9. M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].

    ADS  Article  Google Scholar 

  10. J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  11. C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].

    ADS  Article  Google Scholar 

  12. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    ADS  Article  Google Scholar 

  13. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  14. T. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  15. R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  16. A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].

  17. A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  18. K. Babu, Model ofCalculableMajorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].

    ADS  Article  Google Scholar 

  19. L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].

    ADS  Google Scholar 

  20. M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].

    ADS  Article  Google Scholar 

  21. M. Aoki, S. Kanemura and O. Seto, A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [INSPIRE].

    ADS  Google Scholar 

  22. M. Gustafsson, J.M. No and M.A. Rivera, The Cocktail Model: Neutrino Masses and Mixings with Dark Matter, Phys. Rev. Lett. 110 (2013) 211802 [arXiv:1212.4806] [INSPIRE].

    ADS  Article  Google Scholar 

  23. P. Dey, A. Kundu, B. Mukhopadhyaya and S. Nandi, Two-loop neutrino masses with large R-parity violating interactions in supersymmetry, JHEP 12 (2008) 100 [arXiv:0808.1523] [INSPIRE].

    ADS  Article  Google Scholar 

  24. K. Babu and J. Julio, Two-Loop Neutrino Mass Generation through Leptoquarks, Nucl. Phys. B 841 (2010) 130 [arXiv:1006.1092] [INSPIRE].

    ADS  Article  Google Scholar 

  25. K. Babu and J. Julio, Radiative Neutrino Mass Generation through Vector-like Quarks, Phys. Rev. D 85 (2012) 073005 [arXiv:1112.5452] [INSPIRE].

    ADS  Google Scholar 

  26. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  27. Y. Cai, X.-G. He, M. Ramsey-Musolf and L.-H. Tsai, RνMDM and lepton flavor violation, JHEP 12 (2011) 054 [arXiv:1108.0969] [INSPIRE].

    ADS  Article  Google Scholar 

  28. E. Ma, Common origin of neutrino mass, dark matter and baryogenesis, Mod. Phys. Lett. A 21 (2006) 1777 [hep-ph/0605180] [INSPIRE].

    ADS  Article  Google Scholar 

  29. T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of Dark Matter: Muon Anomalous Magnetic Moment, Radiative Neutrino Mass and Novel Leptogenesis at the TeV Scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].

    ADS  Google Scholar 

  30. K. Babu and E. Ma, Singlet fermion dark matter and electroweak baryogenesis with radiative neutrino mass, Int. J. Mod. Phys. A 23 (2008) 1813 [arXiv:0708.3790] [INSPIRE].

    ADS  Article  Google Scholar 

  31. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

    ADS  Article  Google Scholar 

  32. F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].

    ADS  Article  Google Scholar 

  33. P. Fileviez Perez and M.B. Wise, On the Origin of Neutrino Masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].

    ADS  Google Scholar 

  34. S.S.C. Law and K.L. McDonald, The Simplest Models of Radiative Neutrino Mass: Excluding Simplified Zee Models and Beyond, arXiv:1303.6384 [INSPIRE].

  35. Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and ingredients for neutrino mass at loop level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].

    ADS  Article  Google Scholar 

  36. S.S. Law and K.L. McDonald, A class of inert N-tuplet models with radiative neutrino mass and dark matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].

    ADS  Article  Google Scholar 

  37. F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].

    ADS  Article  Google Scholar 

  38. F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic decomposition of the neutrinoless double beta decay operator, JHEP 03 (2013) 055 [arXiv:1212.3045] [INSPIRE].

    ADS  Article  Google Scholar 

  39. K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].

    ADS  Article  Google Scholar 

  40. A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].

    ADS  Google Scholar 

  41. P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ΔL = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE].

    ADS  Google Scholar 

  42. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    ADS  Article  Google Scholar 

  43. J. Bowes, R. Foot and R. Volkas, Electric charge quantization from gauge invariance of a Lagrangian: a catalog of baryon number violating scalar interactions, Phys. Rev. D 54 (1996) 6936 [hep-ph/9609290] [INSPIRE].

    ADS  Google Scholar 

  44. I. Baldes, N.F. Bell and R.R. Volkas, Baryon Number Violating Scalar Diquarks at the LHC, Phys. Rev. D 84 (2011) 115019 [arXiv:1110.4450] [INSPIRE].

    ADS  Google Scholar 

  45. J. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    ADS  Article  Google Scholar 

  46. G. Passarino and M. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    ADS  Article  Google Scholar 

  47. N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  48. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Article  Google Scholar 

  50. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    ADS  Article  Google Scholar 

  51. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  52. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  53. L. Lavoura, General formulae for f 1f 2 γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [INSPIRE].

    ADS  Article  Google Scholar 

  54. MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, arXiv:1303.0754 [INSPIRE].

  55. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  56. A. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].

  57. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

    ADS  Google Scholar 

  58. J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [INSPIRE].

    ADS  Google Scholar 

  59. E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].

    ADS  Google Scholar 

  60. A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].

  61. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

  62. T. Kosmas, S. Kovalenko and I. Schmidt, Nuclear μ e conversion in strange quark sea, Phys. Lett. B 511 (2001) 203 [hep-ph/0102101] [INSPIRE].

    ADS  Article  Google Scholar 

  63. COMET collaboration, E.V. Hungerford, COMET/PRISM Muon to Electron Conversion at JPARC, AIP Conf. Proc. 1182 (2009) 694.

  64. COMET collaboration, Y. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), (2009).

  65. Mu2e collaboration, R. Carey et al., Proposal to search for Ne N with a single event sensitivity below 10−16, (2008).

  66. COMET collaboration, A. Kurup, The COherent Muon to Electron Transition (COMET) experiment, Nucl. Phys. Proc. Suppl. 218 (2011) 38 [INSPIRE].

    ADS  Article  Google Scholar 

  67. R.K. Kutschke, The Mu2e Experiment at Fermilab, arXiv:1112.0242 [INSPIRE].

  68. SINDRUM II collaboration, W. Honecker et al., Improved limit on the branching ratio of μe conversion on lead, Phys. Rev. Lett. 76 (1996) 200 [INSPIRE].

    ADS  Article  Google Scholar 

  69. M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].

    ADS  Article  Google Scholar 

  70. W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].

    ADS  Article  Google Scholar 

  71. W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].

    ADS  Article  Google Scholar 

  72. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

    ADS  Article  Google Scholar 

  73. R. Fleischer, Flavour Physics and CP-violation: Expecting the LHC, arXiv:0802.2882 [INSPIRE].

  74. T. Inami and C. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K_L}\to \mu \overline{\mu} \) , K +π + Neutrino anti-neutrino and \( {K^0}\leftrightarrow {{\overline{K}}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].

    Google Scholar 

  75. M. Ciuchini et al., Delta M(K) and epsilon(K) in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].

    ADS  Article  Google Scholar 

  76. D. Becirevic et al., \( {B_d}-{{\overline{B}}_d} \) mixing and the B d J/ψK s asymmetry in general SUSY models, Nucl. Phys. B 634 (2002) 105 [hep-ph/0112303] [INSPIRE].

    ADS  Article  Google Scholar 

  77. UTfit collaboration, http://www.utfit.org (2013).

  78. L. Silvestrini, private communication (2013).

  79. C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of BR[BX s l + l ], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].

    ADS  Article  Google Scholar 

  80. C. Bobeth, A.J. Buras, F. Krüger and J. Urban, QCD corrections to \( \overline{B}\to {X_{d,s }}\nu \overline{\nu} \) , \( {{\overline{B}}_{d,s }}\to \ell {{}^{+}}{\ell^{-}},K\to \pi \nu \overline{\nu} \) and K L μ + μ in the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305] [INSPIRE].

    ADS  Article  Google Scholar 

  81. LHCb collaboration, First Evidence for the Decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  82. LHCb collaboration, Measurement of the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].

    Article  Google Scholar 

  83. CMS collaboration, Measurement of the B(s) to μ + μ branching fraction and search for B0 to μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].

    ADS  Article  Google Scholar 

  84. W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].

    ADS  Article  Google Scholar 

  85. CMS collaboration, Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 055 [arXiv:1210.5627] [INSPIRE].

    ADS  Article  Google Scholar 

  86. CMS collaboration, Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 110 [arXiv:1205.3933] [INSPIRE].

    ADS  Google Scholar 

  87. CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].

  88. J. van der Bij and M. Veltman, Two Loop Large Higgs Mass Correction to the rho Parameter, Nucl. Phys. B 231 (1984) 205 [INSPIRE].

    ADS  Google Scholar 

  89. A. Ghinculov and J. van der Bij, Massive two loop diagrams: the Higgs propagator, Nucl. Phys. B 436 (1995) 30 [hep-ph/9405418] [INSPIRE].

    ADS  Article  Google Scholar 

  90. K.L. McDonald and B. McKellar, Evaluating the two loop diagram responsible for neutrino mass in Babus model, hep-ph/0309270 [INSPIRE].

  91. G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  92. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Schmidt.

Additional information

ArXiv ePrint: 1308.0463

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Angel, P.W., Cai, Y., Rodd, N.L. et al. Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator. J. High Energ. Phys. 2013, 118 (2013). https://doi.org/10.1007/JHEP10(2013)118

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)118

Keywords

  • Beyond Standard Model
  • Neutrino Physics