Skip to main content
Log in

An updated analysis of radion-higgs mixing in the light of LHC data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore the constraints on the parameter space of a Randall-Sundrum warped geometry scenario, where a radion field arises out of the attempt to stabilise the radius of the extra compact spacelike dimension, using the most recent data from higgs searches at the Large Hadron Collider (LHC) and the Tevatron. We calculate contributions from both the scalar mass eigenstates arising from radion-higgs kinetic mixing in all important search channels. The most important channel to be affected is the decay via WW(*),wherenoinvariantmasspeakcandiscernthetwodistinctphysicalstates. Improving upon the previous studies, we perform a full analysis in the WW(*) channel, taking into account the effect of various cuts and interference when the two scalar are closely spaced. We examine both cases where the experimentally discovered scalar is either ‘higgs-like’ or ‘radion-like’. The implications of a relatively massive scalar decaying into a pair of 125 GeV scalars is also included. Based on a global analysis of the current data, including not only a single 125 GeV scalar but also another one with mass over the range 110 to 600 GeV, we obtain the up-to-date exclusion contours in the parameter space. Side by side, regions agreeing with the data within 68% and 95% confidence level based on a χ2-minimisation procedure, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. H. Davoudiasl, J. Hewett and T. Rizzo, Phenomenology of the Randall-Sundrum Gauge Hierarchy Model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [INSPIRE].

    Article  ADS  Google Scholar 

  5. H. Davoudiasl, J. Hewett and T. Rizzo, Experimental probes of localized gravity: On and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].

    ADS  Google Scholar 

  6. S. Chang and M. Yamaguchi, Fate of gravitons in warped extra dimension, hep-ph/9909523 [INSPIRE].

  7. ATLAS collaboration, Search for high-mass dilepton resonances in 20 f b −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-017 (2013).

  8. CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=8 \) TeV, arXiv:1302.4794 [INSPIRE].

  9. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  10. W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].

    ADS  Google Scholar 

  13. C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406] [INSPIRE].

    ADS  Google Scholar 

  14. D. Dominici, B. Grzadkowski, J.F. Gunion and M. Toharia, The Scalar sector of the Randall-Sundrum model, Nucl. Phys. B 671 (2003) 243 [hep-ph/0206192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].

    ADS  Google Scholar 

  16. U. Mahanta and S. Rakshit, Some low-energy effects of a light stabilized radion in the Randall-Sundrum model, Phys. Lett. B 480 (2000) 176 [hep-ph/0002049] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.F. Gunion, M. Toharia and J.D. Wells, Precision electroweak data and the mixed Radion-Higgs sector of warped extra dimensions, Phys. Lett. B 585 (2004) 295 [hep-ph/0311219] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Toharia, Precision electroweak constraints on the mixed radion Higgs sector, hep-ph/0402092 [INSPIRE].

  19. M. Toharia, Higgs-Radion Mixing with Enhanced Di-Photon Signal, Phys. Rev. D 79 (2009) 015009 [arXiv:0809.5245] [INSPIRE].

    ADS  Google Scholar 

  20. M. Frank, B. Korutlu and M. Toharia, Saving the fourth generation Higgs with radion mixing, Phys. Rev. D 85 (2012) 115025 [arXiv:1204.5944] [INSPIRE].

    ADS  Google Scholar 

  21. T.G. Rizzo, Effects on Higgs boson properties from radion mixing, hep-ph/0207113 [INSPIRE].

  22. K. Cheung, C. Kim and J. Song, Probing the radion-Higgs mixing at photon colliders, Phys. Rev. D 72 (2005) 115015 [hep-ph/0509017] [INSPIRE].

    ADS  Google Scholar 

  23. T. Han, G.D. Kribs and B. McElrath, Radion effects on unitarity in gauge boson scattering, Phys. Rev. D 64 (2001) 076003 [hep-ph/0104074] [INSPIRE].

    ADS  Google Scholar 

  24. M. Chaichian, A. Datta, K. Huitu and Z.-h. Yu, Radion and Higgs mixing at the LHC, Phys. Lett. B 524 (2002) 161 [hep-ph/0110035] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Battaglia, S. De Curtis, A. De Roeck, D. Dominici and J.F. Gunion, On the complementarity of Higgs and radion searches at LHC, Phys. Lett. B 568 (2003) 92 [hep-ph/0304245] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Bhattacherjee and S. Raychaudhuri, Tevatron Signal for an Unmixed Radion, arXiv:1104.4749 [INSPIRE].

  27. V. Goncalves and W. Sauter, Radion production in exclusive processes at CERN LHC, Phys. Rev. D 82 (2010) 056009 [arXiv:1007.5487] [INSPIRE].

    ADS  Google Scholar 

  28. V. Barger, M. Ishida and W.-Y. Keung, Differentiating the Higgs boson from the dilaton and the radion at hadron colliders, Phys. Rev. Lett. 108 (2012) 101802 [arXiv:1111.4473] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  30. H. Davoudiasl, T. McElmurry and A. Soni, The Radion as a Harbinger of Deca-TeV Physics, Phys. Rev. D 86 (2012) 075026 [arXiv:1206.4062] [INSPIRE].

    ADS  Google Scholar 

  31. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  32. D. Soa, T. Tham, N. Thao, D. Thuy, D. Thuy et al., Radion production in gamma-electron collisions, Mod. Phys. Lett. A 27 (2012) 1250126 [arXiv:1207.6471] [INSPIRE].

    Article  ADS  Google Scholar 

  33. Z. Chacko, R. Franceschini and R.K. Mishra, Resonance at 125 GeV: Higgs or Dilaton/Radion?, JHEP 04 (2013) 015 [arXiv:1209.3259] [INSPIRE].

    Article  ADS  Google Scholar 

  34. V. Barger and M. Ishida, Randall-Sundrum Reality at the LHC, Phys. Lett. B 709 (2012) 185 [arXiv:1110.6452] [INSPIRE].

    Article  ADS  Google Scholar 

  35. B. Grzadkowski, J.F. Gunion and M. Toharia, Higgs-Radion interpretation of the LHC data?, Phys. Lett. B 712 (2012) 70 [arXiv:1202.5017] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs Searches, Phys. Rev. D 85 (2012) 053003 [arXiv:1111.2006] [INSPIRE].

    ADS  Google Scholar 

  37. H. Kubota and M. Nojiri, Radion-Higgs mixing state at the LHCwith the KK contributions to the production and decay, Phys. Rev. D 87 (2013) 076011 [arXiv:1207.0621] [INSPIRE].

    ADS  Google Scholar 

  38. Y. Ohno and G.-C. Cho, Production and decay of a heavy radion in Rundall-Sundrum model at the LHC, EPJ Web Conf. 49 (2013) 18003 [arXiv:1301.7514] [INSPIRE].

    Article  Google Scholar 

  39. G.-C. Cho, D. Nomura and Y. Ohno, Constraints on radion in a warped extra dimension model from Higgs boson searches at the LHC, arXiv:1305.4431 [INSPIRE].

  40. W.D. Goldberger and M.B. Wise, Bulk fields in the Randall-Sundrum compactification scenario, Phys. Rev. D 60 (1999) 107505 [hep-ph/9907218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. H. Davoudiasl, J. Hewett and T. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC Signals from Warped Extra Dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].

    ADS  Google Scholar 

  44. K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [INSPIRE].

    Article  ADS  Google Scholar 

  45. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  46. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  47. Y. Tang, Implications of LHC Searches for Massive Graviton, JHEP 08 (2012) 078 [arXiv:1206.6949] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J.E. Kim, B. Kyae and H.M. Lee, Effective Gauss-Bonnet interaction in Randall-Sundrum compactificatio n, Phys. Rev. D 62 (2000) 045013 [hep-ph/9912344] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. J.E. Kim, B. Kyae and H.M. Lee, Various modified solutions of the Randall-Sundrum model with the Gauss-Bonnet interaction, Nucl. Phys. B 582 (2000) 296 [Erratum ibid. B 591 (2000) 587] [hep-th/0004005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. T.G. Rizzo, Warped phenomenology of higher-derivative gravity, JHEP 01 (2005) 028 [hep-ph/0412087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S. Choudhury and S. Sengupta, Features of warped geometry in presence of Gauss-Bonnet coupling, JHEP 02 (2013) 136 [arXiv:1301.0918] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. U. Maitra, B. Mukhopadhyaya and S. SenGupta, Reconciling small radion vacuum expectation values with massive gravitons in an Einstein-Gauss-Bonnet warped geometry scenario, arXiv:1307.3018 [INSPIRE].

  53. Z. Chacko, R.K. Mishra and D. Stolarski, Dynamics of a Stabilized Radion and Duality, arXiv:1304.1795 [INSPIRE].

  54. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  56. LHC Higgs Cross Section working group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  57. A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].

    Article  ADS  Google Scholar 

  58. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW(*) →ℓνℓν decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).

  59. CMS collaboration, Evidence for a particle decaying to W+W- in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003.

  60. ATLAS collaboration, Search for the Standard Model Higgs boson in the Hww(*) → ℓνℓν decay mode with 4.7 /fb of ATLAS data at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 62 [arXiv:1206.0756] [INSPIRE].

    ADS  Google Scholar 

  61. ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).

  62. CMS collaboration, Combination of standard model higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.

  63. CDF and D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  64. CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002.

  65. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  66. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001.

  67. ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ushoshi Maitra.

Additional information

ArXiv ePrint: 1307.3765

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, N., Maitra, U. & Mukhopadhyaya, B. An updated analysis of radion-higgs mixing in the light of LHC data. J. High Energ. Phys. 2013, 93 (2013). https://doi.org/10.1007/JHEP10(2013)093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)093

Keywords

Navigation