ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb
−1
of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb
−1
of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
CMS collaboration, Properties of the Higgs-like boson in the decay H → ZZ → 4l in pp collisions at
\( \sqrt{s}=7 \)
and 8 TeV, CMS-PAS-HIG-13-002 (2012).
CMS collaboration, Evidence for a particle decaying to W
+
W
−
in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).
A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
ADS
Google Scholar
M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP
03 (2012) 014 [arXiv:1112.3336] [INSPIRE].
ADS
Google Scholar
M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP
07 (2012) 175 [arXiv:1205.5842] [INSPIRE].
ADS
Google Scholar
U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP
03 (2012) 044 [arXiv:1112.3548] [INSPIRE].
ADS
Google Scholar
J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP
03 (2012) 086 [arXiv:1202.5821] [INSPIRE].
ADS
Google Scholar
M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP
08 (2012) 060 [arXiv:1206.1082] [INSPIRE].
ADS
Google Scholar
A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].
ADS
Google Scholar
M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs boson production and decay: effects from light third generation and vectorlike matter, Phys. Rev. D 86 (2012) 095028 [arXiv:1207.7068] [INSPIRE].
ADS
Google Scholar
M. Chala, h → γγ excess and dark matter from composite Higgs models, JHEP
01 (2013) 122 [arXiv:1210.6208] [INSPIRE].
ADS
Google Scholar
B. Swiezewska and M. Krawczyk, Diphoton rate in the inert doublet model with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE].
ADS
Google Scholar
D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP
07 (2012) 136 [arXiv:1202.3144] [INSPIRE].
ADS
Google Scholar
B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP
11 (2012) 003 [arXiv:1205.4032] [INSPIRE].
ADS
Google Scholar
A. Alves et al., Explaining the Higgs decays at the LHC with an extended electroweak model, Eur. Phys. J. C 73 (2013) 2288 [arXiv:1207.3699] [INSPIRE].
ADS
Google Scholar
T. Abe, N. Chen and H.-J. He, LHC Higgs signatures from extended electroweak gauge symmetry, JHEP
01 (2013) 082 [arXiv:1207.4103] [INSPIRE].
ADS
Google Scholar
H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)
PQ
-extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].
ADS
Google Scholar
A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced higgs to di-photon rate from vector-like leptons, JHEP
12 (2012) 064 [arXiv:1207.4235] [INSPIRE].
ADS
Google Scholar
N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for naturalness at the LHC?, JHEP
01 (2013) 149 [arXiv:1207.4482] [INSPIRE].
ADS
Google Scholar
N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].
ADS
Google Scholar
A. Carmona and F. Goertz, Custodial leptons and Higgs decays, JHEP
04 (2013) 163 [arXiv:1301.5856] [INSPIRE].
ADS
Google Scholar
J.A. Casas, J.M. Moreno, K. Rolbiecki and B. Zaldivar, Implications of light charginos for Higgs observables, LHC searches and dark matter, JHEP
09 (2013) 099 [arXiv:1305.3274] [INSPIRE].
ADS
Google Scholar
L. Basso and F. Staub, Enhancing h → γγ with staus in SUSY models with extended gauge sector, Phys. Rev. D 87 (2013) 015011 [arXiv:1210.7946] [INSPIRE].
ADS
Google Scholar
M. Olechowski and S. Pokorski, Hierarchy of quark masses in the isotopic doublets in N = 1 supergravity models, Phys. Lett. B 214 (1988) 393 [INSPIRE].
ADS
Google Scholar
B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].
ADS
Google Scholar
G.W. Anderson, S. Raby, S. Dimopoulos and L.J. Hall, Precise predictions for m(t), V (cb) and tan β, Phys. Rev. D 47 (1993) 3702 [hep-ph/9209250] [INSPIRE].
ADS
Google Scholar
D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP
10 (2009) 059 [arXiv:0907.4709] [INSPIRE].
ADS
Google Scholar
I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t-b-τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP
12 (2010) 055 [arXiv:1008.2765] [INSPIRE].
ADS
Google Scholar
I. Gogoladze, Q. Shafi and C.S. Un, SO(10) Yukawa Unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].
ADS
Google Scholar
A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].
ADS
Google Scholar
M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A predictive Yukawa unified SO(10) model: Higgs and sparticle masses, JHEP
07 (2013) 139 [arXiv:1303.6964] [INSPIRE].
ADS
Google Scholar
M. Badziak, M. Olechowski and S. Pokorski, Yukawa unification in SO(10) with light sparticle spectrum, JHEP
08 (2011) 147 [arXiv:1107.2764] [INSPIRE].
ADS
Google Scholar
M. Badziak and K. Sakurai, LHC constraints on Yukawa unification in SO(10), JHEP
02 (2012) 125 [arXiv:1112.4796] [INSPIRE].
ADS
Google Scholar
L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
ADS
Google Scholar
M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].
ADS
Google Scholar
M.S. Carena, S. Pokorski and C. Wagner, On the unification of couplings in the minimal supersymmetric standard model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [INSPIRE].
ADS
Google Scholar
M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan β solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].
ADS
Google Scholar
I. Gogoladze, Q. Shafi and C.S. Un, 125 GeV Higgs boson from t-b-τ Yukawa Unification, JHEP
07 (2012) 055 [arXiv:1203.6082] [INSPIRE].
MathSciNet
ADS
Google Scholar
I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP
08 (2012) 028 [arXiv:1112.2206] [INSPIRE].
ADS
Google Scholar
M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].
ADS
Google Scholar
Y. Kawamura, H. Murayama and M. Yamaguchi, Low-energy effective Lagrangian in unified theories with nonuniversal supersymmetry breaking terms, Phys. Rev. D 51 (1995) 1337 [hep-ph/9406245] [INSPIRE].
ADS
Google Scholar
H. Murayama, M. Olechowski and S. Pokorski, Viable t-b-τ Yukawa unification in SUSY SO(10), Phys. Lett. B 371 (1996) 57 [hep-ph/9510327] [INSPIRE].
ADS
Google Scholar
K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].
MathSciNet
ADS
Google Scholar
K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP
09 (2005) 039 [hep-ph/0504037] [INSPIRE].
MathSciNet
ADS
Google Scholar
A. Falkowski, O. Lebedev and Y. Mambrini, SUSY phenomenology of KKLT flux compactifications, JHEP
11 (2005) 034 [hep-ph/0507110] [INSPIRE].
MathSciNet
ADS
Google Scholar
O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].
MathSciNet
ADS
Google Scholar
K. Choi and H.P. Nilles, The gaugino code, JHEP
04 (2007) 006 [hep-ph/0702146] [INSPIRE].
ADS
Google Scholar
V. Lowen and H.P. Nilles, Mirage pattern from the heterotic string, Phys. Rev. D 77 (2008) 106007 [arXiv:0802.1137] [INSPIRE].
MathSciNet
ADS
Google Scholar
M. Badziak, S. Krippendorf, H.P. Nilles and M.W. Winkler, The heterotic MiniLandscape and the 126 GeV Higgs boson, JHEP
03 (2013) 094 [arXiv:1212.0854] [INSPIRE].
ADS
Google Scholar
A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
ADS
Google Scholar
A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett.
B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].
ADS
Google Scholar
G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g − 2, JHEP
10 (2012) 186 [arXiv:1207.6393] [INSPIRE].
ADS
Google Scholar
S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in SUGRA unification, Phys. Rev.
D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].
ADS
Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
ADS
Google Scholar
ALEPH collaboration, A. Heister et al., Search for scalar leptons in e
+
e
−
collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 526 (2002) 206 [hep-ex/0112011] [INSPIRE].
ADS
Google Scholar
DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e
+
e
−
collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J.
C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].
Google Scholar
L3 collaboration, P. Achard et al., Search for scalar leptons and scalar quarks at LEP, Phys. Lett. B 580 (2004) 37 [hep-ex/0310007] [INSPIRE].
ADS
Google Scholar
OPAL collaboration, G. Abbiendi et al., Search for anomalous production of dilepton events with missing transverse momentum in e
+
e
−
collisions at
\( \sqrt{s}=183 \)
Gev to 209 GeV, Eur. Phys. J. C 32 (2004) 453 [hep-ex/0309014] [INSPIRE].
ADS
Google Scholar
LEP2 SUSY working group, Combined LEP selectron/smuon/stau results, 183-208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/sleptons summer04/slep final.html.
R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].
ADS
Google Scholar
J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [Erratum ibid.
B 719 (2013) 472-473] [arXiv:1011.0260] [INSPIRE].
ADS
Google Scholar
M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP
02 (2013) 114 [arXiv:1211.6136] [INSPIRE].
ADS
Google Scholar
T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP
05 (2013) 035 [arXiv:1303.0461] [INSPIRE].
ADS
Google Scholar
H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP
03 (2008) 056 [arXiv:0801.1831] [INSPIRE].
ADS
Google Scholar
H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Search for gluino pair production in final states with missing transverse momentum and at least three b-jets using 12.8 fb
−1
of pp collisions at
\( \sqrt{s}=8 \)
TeV with the ATLAS detector, ATLAS-CONF-2012-145 (2012).
CMS collaboration, Search for gluino-mediated bottom- and top-squark production in pp collisions at 8 TeV, CMS-PAS-SUS-12-024 (2012).
D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
ADS
Google Scholar
K. Tobe and J.D. Wells, Revisiting top bottom tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [INSPIRE].
ADS
Google Scholar
T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].
ADS
Google Scholar
H. Baer, S. Raza and Q. Shafi, A heavier gluino from t-b-τ Yukawa-unified SUSY, Phys. Lett. B 712 (2012) 250 [arXiv:1201.5668] [INSPIRE].
ADS
Google Scholar
A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].
ADS
Google Scholar
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys.
21 (1953) 1087.
ADS
Google Scholar
W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika
57 (1970) 97.
MATH
Google Scholar
B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
ADS
MATH
Google Scholar
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun.
176 (2007) 367 [hep-ph/0607059] [INSPIRE].
ADS
MATH
Google Scholar
Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
M. Misiak et al., Estimate of B(\( \overline{B} \) → X(s)γ) at O(\( \alpha_s^2 \)), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].
ADS
Google Scholar
G. Degrassi, P. Gambino and G. Giudice, B → X(sγ) in supersymmetry: large contributions beyond the leading order, JHEP
12 (2000) 009 [hep-ph/0009337] [INSPIRE].
ADS
Google Scholar
CMS and LHCb collaborations, Combination of results on the rare decays
\( B_{(s)}^0 \) → μ
+
μ
−
from the CMS and LHCb experiments, CMS-PAS-BPH-13-007 (2013).
A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B
s,d
→ μ
+
μ
−), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].
ADS
Google Scholar
WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
ADS
Google Scholar
Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
A.J. Buras, A. Czarnecki, M. Misiak and J. Urban, Completing the NLO QCD calculation of
\( \overline{B} \) → X(sγ), Nucl. Phys. B 631 (2002) 219 [hep-ph/0203135] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Measurement of the
\( B_s^0 \) → μ
+
μ
−
branching fraction and search for B
0 → μ
+
μ
−
with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].
ADS
Google Scholar
LHCb collaboration, Measurement of the
\( B_s^0 \) → μ
+
μ
−
branching fraction and search for B
0 → μ
+
μ
−
decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].
Google Scholar
CMS collaboration, Higgs to τ τ (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).
B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP
09 (2004) 044 [hep-ph/0406166] [INSPIRE].
ADS
Google Scholar
R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Phys. Rev. Lett.
101 (2008) 039901] [arXiv:0803.0672] [INSPIRE].
ADS
Google Scholar
P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP
08 (2010) 104 [arXiv:1005.5709] [INSPIRE].
ADS
Google Scholar
J.L. Feng, P. Kant, S. Profumo and D. Sanford, Three-loop corrections to the Higgs boson mass and implications for supersymmetry at the LHC, Phys. Rev. Lett. 111 (2013) 131802 [arXiv:1306.2318] [INSPIRE].
ADS
Google Scholar
A. Anandakrishnan and S. Raby, Yukawa unification predictions with effective “mirage” mediation, arXiv:1303.5125 [INSPIRE].
S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].
ADS
Google Scholar
T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid.
D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
ADS
Google Scholar
D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].
ADS
Google Scholar
S.F. King, J.P. Roberts and D.P. Roy, Natural dark matter in SUSY GUTs with non-universal gaugino masses, JHEP
10 (2007) 106 [arXiv:0705.4219] [INSPIRE].
ADS
Google Scholar
J.E. Younkin and S.P. Martin, Non-universal gaugino masses, the supersymmetric little hierarchy problem and dark matter, Phys. Rev. D 85 (2012) 055028 [arXiv:1201.2989] [INSPIRE].
ADS
Google Scholar
S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].
ADS
Google Scholar
R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].
MathSciNet
ADS
Google Scholar
Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
ADS
Google Scholar
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α
M Z
, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid.
C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
ADS
Google Scholar
M. Badziak, E. Dudas, M. Olechowski and S. Pokorski, Inverted sfermion mass hierarchy and the Higgs boson mass in the MSSM, JHEP
07 (2012) 155 [arXiv:1205.1675] [INSPIRE].
ADS
Google Scholar
N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys.
B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
ADS
Google Scholar
T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].
ADS
Google Scholar
H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].
ADS
Google Scholar
P.H. Chankowski, J.R. Ellis, M. Olechowski and S. Pokorski, Haggling over the fine tuning price of LEP, Nucl. Phys. B 544 (1999) 39 [hep-ph/9808275] [INSPIRE].
ADS
Google Scholar
K.-i. Okumura and L. Roszkowski, Weakened Constraints from b → sγ on supersymmetry flavor mixing due to next-to-leading-order corrections, Phys. Rev. Lett. 92 (2004) 161801 [hep-ph/0208101] [INSPIRE].
ADS
Google Scholar
G. Elor, L.J. Hall, D. Pinner and J.T. Ruderman, Yukawa unification and the superpartner mass scale, JHEP
10 (2012) 111 [arXiv:1206.5301] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at
\( \sqrt{s}=8 \)
TeV, ATLAS-CONF-2013-028 (2013).
CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022 (2012).
ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in
\( \sqrt{s}=8 \)
TeV pp collisions with the ATLAS detector., ATLAS-CONF-2013-053 (2013).
A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric heavy Higgs bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].
ADS
Google Scholar
A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon.
B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].
ADS
Google Scholar
A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
ADS
MATH
Google Scholar
M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS (Update), ATL-PHYS-PUB-2012-004 (2012).
M. Badziak, M. Olechowski and S. Pokorski, New regions in the NMSSM with a 125 GeV Higgs, JHEP
06 (2013) 043 [arXiv:1304.5437] [INSPIRE].
ADS
Google Scholar