Skip to main content

Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification

Abstract

It is shown that substantially enhanced Higgs to diphoton rate induced by light staus with large left-right mixing in MSSM requires at the GUT scale non-universal gaugino masses with bino and/or wino lighter than gluino. The possibility of such enhancement is investigated in MSSM models with arbitrary gaugino masses at the GUT scale with additional restriction of top-bottom-tau Yukawa unification, as predicted by minimal SO(10) GUTs. Many patterns of gaugino masses leading to enhanced Higgs to diphoton rate and the Yukawa unification are identified. Some of these patterns can be accommodated in a well-motivated scenarios such as mirage mediation or SUSY breaking F -terms being a non- singlet of SO(10). Phenomenological implications of a scenario with non-universal gaugino masses generated by a mixture of the singlet F -term and the F -term in a 24-dimensional representation of SU(5) ⊂ SO(10) are studied in detail. Possible non-universalities of other soft terms generated by such F-terms are discussed. The enhancement of Higgs to diphoton rate up to 30% can be obtained in agreement with all phenomenological constraints, including vacuum metastability bounds. The lightest sbottom and pseudoscalar Higgs are within easy reach of the 14 TeV LHC. The LSP can be either bino-like or wino-like. The thermal relic abundance in the former case may be in agreement with the cosmological data thanks to efficient stau coannihilation.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  4. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  5. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).

  6. CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2012).

  7. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).

  8. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).

  9. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Google Scholar 

  10. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Google Scholar 

  11. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Google Scholar 

  12. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    ADS  Google Scholar 

  13. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    ADS  Google Scholar 

  14. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    ADS  Google Scholar 

  15. A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].

    ADS  Google Scholar 

  16. M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs boson production and decay: effects from light third generation and vectorlike matter, Phys. Rev. D 86 (2012) 095028 [arXiv:1207.7068] [INSPIRE].

    ADS  Google Scholar 

  17. M. Chala, hγγ excess and dark matter from composite Higgs models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].

    ADS  Google Scholar 

  18. B. Swiezewska and M. Krawczyk, Diphoton rate in the inert doublet model with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE].

    ADS  Google Scholar 

  19. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    ADS  Google Scholar 

  20. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].

    ADS  Google Scholar 

  21. A. Alves et al., Explaining the Higgs decays at the LHC with an extended electroweak model, Eur. Phys. J. C 73 (2013) 2288 [arXiv:1207.3699] [INSPIRE].

    ADS  Google Scholar 

  22. T. Abe, N. Chen and H.-J. He, LHC Higgs signatures from extended electroweak gauge symmetry, JHEP 01 (2013) 082 [arXiv:1207.4103] [INSPIRE].

    ADS  Google Scholar 

  23. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1) PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  24. A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    ADS  Google Scholar 

  25. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].

    ADS  Google Scholar 

  26. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  27. A. Carmona and F. Goertz, Custodial leptons and Higgs decays, JHEP 04 (2013) 163 [arXiv:1301.5856] [INSPIRE].

    ADS  Google Scholar 

  28. J.A. Casas, J.M. Moreno, K. Rolbiecki and B. Zaldivar, Implications of light charginos for Higgs observables, LHC searches and dark matter, JHEP 09 (2013) 099 [arXiv:1305.3274] [INSPIRE].

    ADS  Google Scholar 

  29. L. Basso and F. Staub, Enhancing hγγ with staus in SUSY models with extended gauge sector, Phys. Rev. D 87 (2013) 015011 [arXiv:1210.7946] [INSPIRE].

    ADS  Google Scholar 

  30. M. Olechowski and S. Pokorski, Hierarchy of quark masses in the isotopic doublets in N = 1 supergravity models, Phys. Lett. B 214 (1988) 393 [INSPIRE].

    ADS  Google Scholar 

  31. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].

    ADS  Google Scholar 

  32. G.W. Anderson, S. Raby, S. Dimopoulos and L.J. Hall, Precise predictions for m(t), V (cb) and tan β, Phys. Rev. D 47 (1993) 3702 [hep-ph/9209250] [INSPIRE].

    ADS  Google Scholar 

  33. D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907.4709] [INSPIRE].

    ADS  Google Scholar 

  34. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t-b-τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].

    ADS  Google Scholar 

  35. I. Gogoladze, Q. Shafi and C.S. Un, SO(10) Yukawa Unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].

    ADS  Google Scholar 

  36. A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].

    ADS  Google Scholar 

  37. M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A predictive Yukawa unified SO(10) model: Higgs and sparticle masses, JHEP 07 (2013) 139 [arXiv:1303.6964] [INSPIRE].

    ADS  Google Scholar 

  38. M. Badziak, M. Olechowski and S. Pokorski, Yukawa unification in SO(10) with light sparticle spectrum, JHEP 08 (2011) 147 [arXiv:1107.2764] [INSPIRE].

    ADS  Google Scholar 

  39. M. Badziak and K. Sakurai, LHC constraints on Yukawa unification in SO(10), JHEP 02 (2012) 125 [arXiv:1112.4796] [INSPIRE].

    ADS  Google Scholar 

  40. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  41. M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].

    ADS  Google Scholar 

  42. M.S. Carena, S. Pokorski and C. Wagner, On the unification of couplings in the minimal supersymmetric standard model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [INSPIRE].

    ADS  Google Scholar 

  43. M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan β solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].

    ADS  Google Scholar 

  44. I. Gogoladze, Q. Shafi and C.S. Un, 125 GeV Higgs boson from t-b-τ Yukawa Unification, JHEP 07 (2012) 055 [arXiv:1203.6082] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].

    ADS  Google Scholar 

  46. M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].

    ADS  Google Scholar 

  47. Y. Kawamura, H. Murayama and M. Yamaguchi, Low-energy effective Lagrangian in unified theories with nonuniversal supersymmetry breaking terms, Phys. Rev. D 51 (1995) 1337 [hep-ph/9406245] [INSPIRE].

    ADS  Google Scholar 

  48. H. Murayama, M. Olechowski and S. Pokorski, Viable t-b-τ Yukawa unification in SUSY SO(10), Phys. Lett. B 371 (1996) 57 [hep-ph/9510327] [INSPIRE].

    ADS  Google Scholar 

  49. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. A. Falkowski, O. Lebedev and Y. Mambrini, SUSY phenomenology of KKLT flux compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. K. Choi and H.P. Nilles, The gaugino code, JHEP 04 (2007) 006 [hep-ph/0702146] [INSPIRE].

    ADS  Google Scholar 

  54. V. Lowen and H.P. Nilles, Mirage pattern from the heterotic string, Phys. Rev. D 77 (2008) 106007 [arXiv:0802.1137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. M. Badziak, S. Krippendorf, H.P. Nilles and M.W. Winkler, The heterotic MiniLandscape and the 126 GeV Higgs boson, JHEP 03 (2013) 094 [arXiv:1212.0854] [INSPIRE].

    ADS  Google Scholar 

  56. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    ADS  Google Scholar 

  57. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    ADS  Google Scholar 

  58. G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g − 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].

    ADS  Google Scholar 

  59. S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in SUGRA unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].

    ADS  Google Scholar 

  60. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  61. ALEPH collaboration, A. Heister et al., Search for scalar leptons in e + e collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 526 (2002) 206 [hep-ex/0112011] [INSPIRE].

    ADS  Google Scholar 

  62. DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].

    Google Scholar 

  63. L3 collaboration, P. Achard et al., Search for scalar leptons and scalar quarks at LEP, Phys. Lett. B 580 (2004) 37 [hep-ex/0310007] [INSPIRE].

    ADS  Google Scholar 

  64. OPAL collaboration, G. Abbiendi et al., Search for anomalous production of dilepton events with missing transverse momentum in e + e collisions at \( \sqrt{s}=183 \) Gev to 209 GeV, Eur. Phys. J. C 32 (2004) 453 [hep-ex/0309014] [INSPIRE].

    ADS  Google Scholar 

  65. LEP2 SUSY working group, Combined LEP selectron/smuon/stau results, 183-208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/sleptons summer04/slep final.html.

  66. R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].

    ADS  Google Scholar 

  67. J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472-473] [arXiv:1011.0260] [INSPIRE].

    ADS  Google Scholar 

  68. M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    ADS  Google Scholar 

  69. T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].

    ADS  Google Scholar 

  70. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [INSPIRE].

    ADS  Google Scholar 

  71. H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].

    ADS  Google Scholar 

  72. ATLAS collaboration, Search for gluino pair production in final states with missing transverse momentum and at least three b-jets using 12.8 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2012-145 (2012).

  73. CMS collaboration, Search for gluino-mediated bottom- and top-squark production in pp collisions at 8 TeV, CMS-PAS-SUS-12-024 (2012).

  74. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    ADS  Google Scholar 

  75. K. Tobe and J.D. Wells, Revisiting top bottom tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [INSPIRE].

    ADS  Google Scholar 

  76. T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].

    ADS  Google Scholar 

  77. H. Baer, S. Raza and Q. Shafi, A heavier gluino from t-b-τ Yukawa-unified SUSY, Phys. Lett. B 712 (2012) 250 [arXiv:1201.5668] [INSPIRE].

    ADS  Google Scholar 

  78. A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].

    ADS  Google Scholar 

  79. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087.

    ADS  Google Scholar 

  80. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970) 97.

    MATH  Google Scholar 

  81. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    ADS  MATH  Google Scholar 

  82. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    ADS  MATH  Google Scholar 

  83. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].

  84. M. Misiak et al., Estimate of B(\( \overline{B} \)X(s)γ) at O(\( \alpha_s^2 \)), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    ADS  Google Scholar 

  85. G. Degrassi, P. Gambino and G. Giudice, BX() in supersymmetry: large contributions beyond the leading order, JHEP 12 (2000) 009 [hep-ph/0009337] [INSPIRE].

    ADS  Google Scholar 

  86. CMS and LHCb collaborations, Combination of results on the rare decays \( B_{(s)}^0 \)μ + μ from the CMS and LHCb experiments, CMS-PAS-BPH-13-007 (2013).

  87. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,d μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    ADS  Google Scholar 

  88. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

    ADS  Google Scholar 

  89. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  90. A.J. Buras, A. Czarnecki, M. Misiak and J. Urban, Completing the NLO QCD calculation of \( \overline{B} \)X(), Nucl. Phys. B 631 (2002) 219 [hep-ph/0203135] [INSPIRE].

    ADS  Google Scholar 

  91. CMS collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].

    ADS  Google Scholar 

  92. LHCb collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].

    Google Scholar 

  93. CMS collaboration, Higgs to τ τ (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).

  94. B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    ADS  Google Scholar 

  95. R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Phys. Rev. Lett. 101 (2008) 039901] [arXiv:0803.0672] [INSPIRE].

    ADS  Google Scholar 

  96. P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].

    ADS  Google Scholar 

  97. J.L. Feng, P. Kant, S. Profumo and D. Sanford, Three-loop corrections to the Higgs boson mass and implications for supersymmetry at the LHC, Phys. Rev. Lett. 111 (2013) 131802 [arXiv:1306.2318] [INSPIRE].

    ADS  Google Scholar 

  98. A. Anandakrishnan and S. Raby, Yukawa unification predictions with effectivemiragemediation, arXiv:1303.5125 [INSPIRE].

  99. S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  100. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

    ADS  Google Scholar 

  101. D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].

    ADS  Google Scholar 

  102. S.F. King, J.P. Roberts and D.P. Roy, Natural dark matter in SUSY GUTs with non-universal gaugino masses, JHEP 10 (2007) 106 [arXiv:0705.4219] [INSPIRE].

    ADS  Google Scholar 

  103. J.E. Younkin and S.P. Martin, Non-universal gaugino masses, the supersymmetric little hierarchy problem and dark matter, Phys. Rev. D 85 (2012) 055028 [arXiv:1201.2989] [INSPIRE].

    ADS  Google Scholar 

  104. S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].

    ADS  Google Scholar 

  105. R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  106. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  107. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α M Z , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

    ADS  Google Scholar 

  108. M. Badziak, E. Dudas, M. Olechowski and S. Pokorski, Inverted sfermion mass hierarchy and the Higgs boson mass in the MSSM, JHEP 07 (2012) 155 [arXiv:1205.1675] [INSPIRE].

    ADS  Google Scholar 

  109. N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Google Scholar 

  110. T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].

    ADS  Google Scholar 

  111. H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].

    ADS  Google Scholar 

  112. P.H. Chankowski, J.R. Ellis, M. Olechowski and S. Pokorski, Haggling over the fine tuning price of LEP, Nucl. Phys. B 544 (1999) 39 [hep-ph/9808275] [INSPIRE].

    ADS  Google Scholar 

  113. K.-i. Okumura and L. Roszkowski, Weakened Constraints from bsγ on supersymmetry flavor mixing due to next-to-leading-order corrections, Phys. Rev. Lett. 92 (2004) 161801 [hep-ph/0208101] [INSPIRE].

    ADS  Google Scholar 

  114. G. Elor, L.J. Hall, D. Pinner and J.T. Ruderman, Yukawa unification and the superpartner mass scale, JHEP 10 (2012) 111 [arXiv:1206.5301] [INSPIRE].

    ADS  Google Scholar 

  115. ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-028 (2013).

  116. CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022 (2012).

  117. ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector., ATLAS-CONF-2013-053 (2013).

  118. A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric heavy Higgs bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].

    ADS  Google Scholar 

  119. A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  120. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    ADS  MATH  Google Scholar 

  121. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    ADS  Google Scholar 

  122. ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS (Update), ATL-PHYS-PUB-2012-004 (2012).

  123. M. Badziak, M. Olechowski and S. Pokorski, New regions in the NMSSM with a 125 GeV Higgs, JHEP 06 (2013) 043 [arXiv:1304.5437] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Badziak.

Additional information

ArXiv ePrint: 1307.7999

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Badziak, M., Olechowski, M. & Pokorski, S. Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification. J. High Energ. Phys. 2013, 88 (2013). https://doi.org/10.1007/JHEP10(2013)088

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)088

Keywords

  • Supersymmetry Phenomenology