Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The MSSM Higgs sector at a high MSUSY: reopening the low tan β regime and heavy Higgs searches

  • Open access
  • Published: 03 October 2013
  • Volume 2013, article number 28, (2013)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The MSSM Higgs sector at a high MSUSY: reopening the low tan β regime and heavy Higgs searches
Download PDF
  • Abdelhak Djouadi1 &
  • Jérémie Quevillon1 
  • 436 Accesses

  • 64 Citations

  • Explore all metrics

Abstract

One of the main implications of the LHC discovery of a Higgs boson with a mass M h  ≈ 126 GeV is that the scale of supersymmetry-breaking in the Minimal Supersymmetric Standard Model (MSSM) might be rather high, M S  ≫ M Z . In this paper, we consider the high M S regime and study the spectrum of the extended Higgs sector of the MSSM, including the LHC constraints on the mass and the rates of the observed light h state. In particular, we show that in a simplified model that approximates the important radiative corrections, the unknown scale M S (and some other leading SUSY parameters) can be traded against the measured value of M h . One would be then essentially left with only two free parameters to describe the Higgs sector, tan β and the pseudoscalar Higgs mass M A , even at higher orders. The main phenomenological consequence of these high M S values is to reopen the low tan β region, tan β ≲ 3–5, which was for a long time buried under the LEP constraint on the lightest h mass when a low SUSY scale was assumed. We show that, in this case, the heavier MSSM neutral H/A and charged H ± states can be searched for in a variety of interesting final states such as decays into gauge and lighter Higgs bosons (in pairs on in mixed states) and decays into heavy top quarks. Examples of sensitivity on the [tan β, M A ] parameter space at the LHC in these channels are given.

Article PDF

Download to read the full article text

Similar content being viewed by others

The Discovery of the Higgs Boson at the LHC

Chapter © 2020

Search for light Higgs bosons from supersymmetric cascade decays in $$\text {pp}$$ collisions at $$\sqrt{s}=13\,\textrm{TeV}$$

Article Open access 06 July 2023

A. Tumasyan, W. Adam, … CMS Collaboration

The trilinear Higgs self-couplings at $$\mathcal {O}(\alpha _t^2)$$ in the CP-violating NMSSM

Article Open access 04 February 2023

Christoph Borschensky, Thi Nhung Dao, … Heidi Rzehak

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  4. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. G. Guralnik, C. Hagen and T. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Google Scholar 

  6. P.W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Westview Press, Reading U.S.A. (1990).

    Google Scholar 

  8. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    ADS  Google Scholar 

  9. H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Google Scholar 

  10. S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].

  11. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2005).

    Google Scholar 

  12. MSSM Working Group collaboration, A. Djouadi et al., The Minimal supersymmetric standard model: Group summary report, hep-ph/9901246 [INSPIRE].

  13. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Google Scholar 

  14. M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].

    ADS  Google Scholar 

  15. S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].

    ADS  Google Scholar 

  16. B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    ADS  Google Scholar 

  17. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  18. ATLAS and CMS collaborations, talks at Rencontres de Moriond, 2–16 March 2013, La Thuile Italy.

  19. H.E. Haber, Challenges for nonminimal Higgs searches at future colliders, CERN-TH/95-109 [hep-ph/9505240] [INSPIRE].

  20. R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    ADS  Google Scholar 

  21. ALEPH, DELPHI, L3, OPAL and LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

    ADS  Google Scholar 

  22. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Google Scholar 

  23. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

  24. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  25. L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    ADS  Google Scholar 

  26. J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].

    ADS  Google Scholar 

  27. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    ADS  Google Scholar 

  28. J.R. Ellis, K.A. Olive and P. Sandick, Varying the Universality of Supersymmetry-Breaking Contributions to MSSM Higgs Boson Masses, Phys. Rev. D 78 (2008) 075012 [arXiv:0805.2343] [INSPIRE].

    ADS  Google Scholar 

  29. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the Non-Universal Higgs Model, Phys. Rev. D 83 (2011) 015014 [arXiv:0903.1279] [INSPIRE].

    ADS  Google Scholar 

  30. S. AbdusSalam et al., Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC, Eur. Phys. J. C 71 (2011) 1835 [arXiv:1109.3859] [INSPIRE].

    ADS  Google Scholar 

  31. A. Delgado and G. Giudice, On the tuning condition of split supersymmetry, Phys. Lett. B 627 (2005) 155 [hep-ph/0506217] [INSPIRE].

    ADS  Google Scholar 

  32. E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Decays of H 0 /A 0 in supersymmetric scenarios with heavy sfermions, Eur. Phys. J. C 73 (2013) 2384 [arXiv:1211.0163] [INSPIRE].

    ADS  Google Scholar 

  33. E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].

    ADS  Google Scholar 

  34. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    ADS  MATH  Google Scholar 

  35. H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, ISAJET 7.48: A Monte Carlo event generator for pp, pp, and e + e − reactions, hep-ph/0001086 [INSPIRE].

  36. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    ADS  MATH  Google Scholar 

  37. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e − colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    ADS  Google Scholar 

  38. N. Bernal, A. Djouadi and P. Slavich, The MSSM with heavy scalars, JHEP 07 (2007) 016 [arXiv:0705.1496] [INSPIRE].

    ADS  Google Scholar 

  39. E. Bagnaschi, N. Bernal, A. Djouadi, J. Quevillon and P. Slavich, Heavy MSSM Higgs search channels at the LHC, in preparation.

  40. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    ADS  Google Scholar 

  41. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  42. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    ADS  Google Scholar 

  43. L. Maiani, A. Polosa and V. Riquer, Probing Minimal Supersymmetry at the LHC with the Higgs Boson Masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].

    ADS  Google Scholar 

  44. L. Maiani, A. Polosa and V. Riquer, Heavier Higgs Particles: Indications from Minimal Supersymmetry, Phys. Lett. B 718 (2012) 465 [arXiv:1209.4816] [INSPIRE].

    ADS  Google Scholar 

  45. F. Zwirner, The quest for low-energy supersymmetry and the role of high-energy e + e − colliders, hep-ph/9203204 [INSPIRE].

  46. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    ADS  Google Scholar 

  47. M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    ADS  Google Scholar 

  48. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

  49. G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].

    ADS  Google Scholar 

  50. A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].

    ADS  Google Scholar 

  51. A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].

    ADS  Google Scholar 

  52. S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].

    ADS  Google Scholar 

  53. S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  54. P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].

    ADS  Google Scholar 

  55. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].

    ADS  Google Scholar 

  56. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results, Phys. Lett. B 720 (2013) 153 [arXiv:1211.4004] [INSPIRE].

    ADS  Google Scholar 

  57. M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].

    ADS  Google Scholar 

  58. M. Carena, S. Heinemeyer, O. Stal, C. Wagner and G. Weiglein, MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle, arXiv:1302.7033 [INSPIRE].

  59. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    ADS  MATH  Google Scholar 

  60. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  61. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Google Scholar 

  62. G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    ADS  Google Scholar 

  63. J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].

    ADS  Google Scholar 

  64. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  65. J.L. Feng, Naturalness and the Status of Supersymmetry, arXiv:1302.6587 [INSPIRE].

  66. D. Feldman, G. Kane, E. Kuflik and R. Lu, A new (string motivated) approach to the little hierarchy problem, Phys. Lett. B 704 (2011) 56 [arXiv:1105.3765] [INSPIRE].

    ADS  Google Scholar 

  67. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results and Dark Matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  68. B. Acharya, G. Kane and P. Kumar, Compactified String Theories - Generic Predictions for Particle Physics, Int. J. Mod. Phys. A 27 (2012) 1230012.

    MathSciNet  ADS  Google Scholar 

  69. G. Kane, R. Lu and B. Zheng, Review and update of the compactified M/string theory prediction of the Higgs boson mass and properties, Int. J. Mod. Phys. A 28 (2013) 1330002.

    ADS  Google Scholar 

  70. M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the tbH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].

    ADS  Google Scholar 

  71. D. Noth and M. Spira, Higgs Boson Couplings to Bottom Quarks: Two-Loop Supersymmetry-QCD Corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [INSPIRE].

    ADS  Google Scholar 

  72. A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Testing Higgs selfcouplings at e + e − linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].

    ADS  Google Scholar 

  73. A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].

    ADS  Google Scholar 

  74. E. Boos, A. Djouadi, M. Muhlleitner and A. Vologdin, The MSSM Higgs bosons in the intense coupling regime, Phys. Rev. D 66 (2002) 055004 [hep-ph/0205160] [INSPIRE].

    ADS  Google Scholar 

  75. E. Boos, A. Djouadi and A. Nikitenko, Detection of the neutral MSSM Higgs bosons in the intense coupling regime at the LHC, Phys. Lett. B 578 (2004) 384 [hep-ph/0307079] [INSPIRE].

    ADS  Google Scholar 

  76. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].

    ADS  Google Scholar 

  77. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  78. D.A. Dicus and S. Willenbrock, Higgs Boson Production from Heavy Quark Fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].

    ADS  Google Scholar 

  79. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    ADS  Google Scholar 

  80. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

    ADS  MATH  Google Scholar 

  81. M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].

  82. Michael Spira site: http://people.web.psi.ch/spira/proglist.html.

  83. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-Boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].

    ADS  Google Scholar 

  84. F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].

    ADS  Google Scholar 

  85. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

    ADS  Google Scholar 

  86. R. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605.

    ADS  Google Scholar 

  87. S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].

    ADS  Google Scholar 

  88. S. Dawson, C. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].

    ADS  Google Scholar 

  89. A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric Heavy Higgs Bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].

    ADS  Google Scholar 

  90. S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].

    ADS  Google Scholar 

  91. R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].

    ADS  Google Scholar 

  92. R. Harlander and M. Steinhauser, Effects of SUSY QCD in hadronic Higgs production at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 111701 [hep-ph/0308210] [INSPIRE].

    ADS  Google Scholar 

  93. M. Muhlleitner, H. Rzehak and M. Spira, MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass Limit, JHEP 04 (2009) 023 [arXiv:0812.3815] [INSPIRE].

    ADS  Google Scholar 

  94. N. Liu, L. Wu, P.W. Wu and J.M. Yang, Complete one-loop effects of SUSY QCD in \( b\overline{b}h \) production at the LHC under current experimental constraints, JHEP 01 (2013) 161 [arXiv:1208.3413] [INSPIRE].

    ADS  Google Scholar 

  95. ATLAS collaboration, Search for Supersymmetry in final states with two same-sign leptons, jets and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2012-105 (2012).

  96. ATLAS collaboration, Search for supersymmetry using events with three leptons, multiple jets and missing transverse momentum with the ATLAS detector, ATLAS-CONF-2012-108 (2012).

  97. CMS collaboration, Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network, Phys. Rev. D 87 (2013) 072001 [arXiv:1301.0916] [INSPIRE].

    ADS  Google Scholar 

  98. CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=7 \) TeV in events with a single lepton, jets and missing transverse momentum, Eur. Phys. J. C 73 (2013) 2404 [arXiv:1212.6428] [INSPIRE].

    ADS  Google Scholar 

  99. ATLAS collaboration, Search for a Standard Model Higgs boson in H → μμ decays with the ATLAS detector, ATLAS-CONF-2013-010 (2013).

  100. ATLAS collaboration, Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 02 (2013) 095 [arXiv:1211.6956] [INSPIRE].

    ADS  Google Scholar 

  101. CMS collaboration, Search for Neutral MSSM Higgs Bosons in the μ + μ − final state with the CMS experiment in pp Collisions at \( \sqrt{s}=7 \) TeV, CMS-HIG-12-011 (2012).

  102. CMS collaboration, Search for a Higgs boson decaying into a b-quark pair and produced in association with b quarks in proton-proton collisions at 7 TeV, CMS-HIG-12-033 (2012) [arXiv:1302.2892].

  103. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Google Scholar 

  104. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    ADS  Google Scholar 

  105. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    ADS  Google Scholar 

  106. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [INSPIRE].

    ADS  Google Scholar 

  107. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    ADS  Google Scholar 

  108. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    ADS  Google Scholar 

  109. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    ADS  Google Scholar 

  110. R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].

    ADS  Google Scholar 

  111. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

    ADS  Google Scholar 

  112. A. Bawa, C. Kim and A. Martin, Charged Higgs production at hadron colliders, Z. Phys. C 47 (1990) 75.

    Google Scholar 

  113. V.D. Barger, R. Phillips and D. Roy, Heavy charged Higgs signals at the LHC, Phys. Lett. B 324 (1994) 236 [hep-ph/9311372] [INSPIRE].

    ADS  Google Scholar 

  114. S. Moretti and K. Odagiri, Production of charged Higgs bosons of the minimal supersymmetric standard model in b quark initiated processes at the large hadron collider, Phys. Rev. D 55 (1997) 5627 [hep-ph/9611374] [INSPIRE].

    ADS  Google Scholar 

  115. J. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider, Phys. Lett. B 322 (1994) 125 [hep-ph/9312201] [INSPIRE].

    ADS  Google Scholar 

  116. F. Borzumati, J.-L. Kneur and N. Polonsky, Higgs-Strahlung and R-parity violating slepton-Strahlung at hadron colliders, Phys. Rev. D 60 (1999) 115011 [hep-ph/9905443] [INSPIRE].

    ADS  Google Scholar 

  117. T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852.

    ADS  MATH  Google Scholar 

  118. T. Plehn, Charged Higgs Boson Production in Bottom-Gluon Fusion, Phys. Rev. D 67 (2003) 014018.

    ADS  Google Scholar 

  119. S. Moretti, Improving the discovery potential of charged Higgs bosons at the Tevatron and Large Hadron Collider, Pramana 60 (2003) 369.

    ADS  Google Scholar 

  120. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    ADS  MATH  Google Scholar 

  121. A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  122. A. Djouadi, J. Kalinowski and P. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].

    Google Scholar 

  123. S. Moretti and W.J. Stirling, Contributions of below threshold decays to MSSM Higgs branching ratios, Phys. Lett. B 347 (1995) 291 [Erratum ibid. B 366 (1996) 451] [hep-ph/9412209] [INSPIRE].

  124. F. Borzumati and A. Djouadi, Lower bounds on charged Higgs bosons from LEP and Tevatron, Phys. Lett. B 549 (2002) 170 [hep-ph/9806301] [INSPIRE].

    ADS  Google Scholar 

  125. ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).

  126. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).

  127. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb 1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  128. CMS collaboration, Properties of the Higgs-like boson in the decay H → ZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).

  129. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (*) → ℓνℓν decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).

  130. CMS collaboration, Evidence for a particle decaying to W + W − in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).

  131. ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).

  132. CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044 (2012).

  133. ATLAS collaboration, Search for Neutral MSSM Higgs bosons in \( \sqrt{s}=7 \) TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).

  134. CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).

  135. ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τν in \( t\overline{t} \) events using 4.6 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-011 (2012).

  136. CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-HIG-11-019 (2012).

  137. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    ADS  Google Scholar 

  138. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7+8 TeV LHC, arXiv:1303.6591 [INSPIRE].

  139. A. Djouadi, Implications of the LHC Higgs Results for Supersymmetry, talk given in Rencontres de la Vallée d’Aoste, La Thuile Italy (2013).

  140. A. Djouadi, Some implications of the LHC Higgs results, talk given in Discrete 2012, Lisbon Portugal (2012).

  141. A. Djouadi, Non-standard/invisible Higgs decay channels in the MSSM, talk given in CMS Exotic Higgs group meeting, CERN (2013).

  142. A. Djouadi, Implications of the LHC data for the MSSM Higgs sector, talk given in ATLAS MSSM Higgs group meeting, CERN (2012).

  143. M. Carena, P. Draper, T. Liu and C. Wagner, The 7 TeV LHC Reach for MSSM Higgs Bosons, Phys. Rev. D 84 (2011) 095010 [arXiv:1107.4354] [INSPIRE].

    ADS  Google Scholar 

  144. N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].

    ADS  Google Scholar 

  145. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the Heavy CP-even Higgs Boson from Current Higgs Data, Phys. Rev. D 87 (2013), no. 3 035008 [arXiv:1211.3849] [INSPIRE].

  146. CMS collaboration, Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC, Eur. Phys. J. C 73 (2013) 2469 [arXiv:1304.0213] [INSPIRE].

    ADS  Google Scholar 

  147. ATLAS collaboration, Search for Higgs bosons in Two-Higgs-Doublet models in the H → WW → eνμν channel with the ATLAS detector, ATLAS-CONF-2013-027 (2013).

  148. ATLAS collaboration, A search for \( t\overline{t} \) resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2012) 041 [arXiv:1207.2409] [INSPIRE].

    ADS  Google Scholar 

  149. CMS collaboration, Search for Z′ resonances decaying to \( t\overline{t} \) in dilepton + jets final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 072002 [arXiv:1211.3338] [INSPIRE].

    ADS  Google Scholar 

  150. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    ADS  Google Scholar 

  151. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    ADS  Google Scholar 

  152. J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

    ADS  Google Scholar 

  153. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    ADS  Google Scholar 

  154. ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).

  155. ATLAS collaboration, Search for a light charged Higgs boson in the decay channel H + → \( c\overline{s} \) in \( t\overline{t} \) events using pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].

    ADS  Google Scholar 

  156. U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  157. M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  158. A. Djouadi, M. Drees, U. Ellwanger, R. Godbole, C. Hugonie et al., Benchmark scenarios for the NMSSM, JHEP 07 (2008) 002 [arXiv:0801.4321] [INSPIRE].

    ADS  Google Scholar 

  159. G. Bélanger et al., Higgs Bosons at 98 and 125 GeV at LEP and the LHC, JHEP 01 (2013) 069 [arXiv:1210.1976] [INSPIRE].

    Google Scholar 

  160. S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    ADS  Google Scholar 

  161. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Google Scholar 

  162. W. Altmannshofer, S. Gori and G. D. Kribs, A Minimal Flavor Violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009.

    ADS  Google Scholar 

  163. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider Data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].

    ADS  Google Scholar 

  164. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    ADS  Google Scholar 

  165. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the Heavy CP-even Higgs Boson from Current Higgs Data, Phys. Rev. D 87 (2013), no. 3 035008 [arXiv:1211.3849] [INSPIRE].

  166. B. Grinstein and P. Uttayarat, Carving Out Parameter Space in Type-II Two Higgs Doublets Model, JHEP 06 (2013) 094 [arXiv:1304.0028] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Physique Théorique, Université Paris XI and CNRS, F-91405, Orsay, France

    Abdelhak Djouadi & Jérémie Quevillon

Authors
  1. Abdelhak Djouadi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jérémie Quevillon
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jérémie Quevillon.

Additional information

ArXiv ePrint: 1304.1787

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Djouadi, A., Quevillon, J. The MSSM Higgs sector at a high MSUSY: reopening the low tan β regime and heavy Higgs searches. J. High Energ. Phys. 2013, 28 (2013). https://doi.org/10.1007/JHEP10(2013)028

Download citation

  • Received: 24 June 2013

  • Accepted: 13 September 2013

  • Published: 03 October 2013

  • DOI: https://doi.org/10.1007/JHEP10(2013)028

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature