Skip to main content

Gravitational waves from oscillon preheating

Abstract

Oscillons are long-lived, localized excitations of nonlinear scalar fields which may be copiously produced during preheating after inflation, leading to a possible oscillon dominated phase in the early Universe. For example, this can happen after axion monodromy inflation, on which we run our simulations. We investigate the stochastic gravitational wave background associated with an oscillon-dominated phase. An isolated oscillon is spherically symmetric and does not radiate gravitational waves, and we show that the flux of gravitational radiation generated between oscillons is also small. However, a significant stochastic gravitational wave background may be generated during preheating itself (i.e, when oscillons are forming), and in this case the characteristic size of the oscillons is imprinted on the gravitational wave power spectrum, which has multiple, distinct peaks.

This is a preview of subscription content, access via your institution.

References

  1. J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].

    ADS  Google Scholar 

  2. A. Dolgov and D. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [Yad. Fiz. 51 (1990) 273] [INSPIRE].

    Google Scholar 

  3. Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

    ADS  Google Scholar 

  4. S.Y. Khlebnikov and I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett. 77 (1996) 219 [hep-ph/9603378] [INSPIRE].

    ADS  Article  Google Scholar 

  5. L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

    ADS  Google Scholar 

  6. G.N. Felder et al., Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett. 87 (2001) 011601 [hep-ph/0012142] [INSPIRE].

    ADS  Article  Google Scholar 

  7. M.A. Amin, R. Easther, H. Finkel, R. Flauger and M.P. Hertzberg, Oscillons after inflation, Phys. Rev. Lett. 108 (2012) 241302 [arXiv:1106.3335] [INSPIRE].

    ADS  Article  Google Scholar 

  8. M.A. Amin, R. Easther and H. Finkel, Inflaton fragmentation and oscillon formation in three dimensions, JCAP 12 (2010) 001 [arXiv:1009.2505] [INSPIRE].

    ADS  Article  Google Scholar 

  9. J. McDonald, Inflaton condensate fragmentation in hybrid inflation models, Phys. Rev. D 66 (2002) 043525 [hep-ph/0105235] [INSPIRE].

    ADS  Google Scholar 

  10. M. Broadhead and J. McDonald, Simulations of the end of supersymmetric hybrid inflation and non-topological soliton formation, Phys. Rev. D 72 (2005) 043519 [hep-ph/0503081] [INSPIRE].

    ADS  Google Scholar 

  11. I. Tkachev, S. Khlebnikov, L. Kofman and A.D. Linde, Cosmic strings from preheating, Phys. Lett. B 440 (1998) 262 [hep-ph/9805209] [INSPIRE].

    ADS  Article  Google Scholar 

  12. S. Kasuya and M. Kawasaki, Q ball formation in the gravity mediated SUSY breaking scenario, Phys. Rev. D 62 (2000) 023512 [hep-ph/0002285] [INSPIRE].

    ADS  Google Scholar 

  13. A. Kusenko, A. Mazumdar and T. Multamaki, Gravitational waves from the fragmentation of a supersymmetric condensate, Phys. Rev. D 79 (2009) 124034 [arXiv:0902.2197] [INSPIRE].

    ADS  Google Scholar 

  14. I. Bogolyubsky and V. Makhankov, Lifetime of pulsating solitons in some classical models, Pisma Zh. Eksp. Teor. Fiz. 24 (1976) 15 [INSPIRE].

    Google Scholar 

  15. M. Gleiser, Pseudostable bubbles, Phys. Rev. D 49 (1994) 2978 [hep-ph/9308279] [INSPIRE].

    ADS  Google Scholar 

  16. E.J. Copeland, M. Gleiser and H.-R. Muller, Oscillons: resonant configurations during bubble collapse, Phys. Rev. D 52 (1995) 1920 [hep-ph/9503217] [INSPIRE].

    ADS  Google Scholar 

  17. I. Dymnikova, L. Koziel, M. Khlopov and S. Rubin, Quasilumps from first order phase transitions, Grav. Cosmol. 6 (2000) 311 [hep-th/0010120] [INSPIRE].

    ADS  MATH  Google Scholar 

  18. E.P. Honda and M.W. Choptuik, Fine structure of oscillons in the spherically symmetric ϕ 4 Klein-Gordon model, Phys. Rev. D 65 (2002) 084037 [hep-ph/0110065] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. E.J. Copeland, S. Pascoli and A. Rajantie, Dynamics of tachyonic preheating after hybrid inflation, Phys. Rev. D 65 (2002) 103517 [hep-ph/0202031] [INSPIRE].

    ADS  Google Scholar 

  20. E. Farhi, N. Graham, V. Khemani, R. Markov and R. Rosales, An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D 72 (2005) 101701 [hep-th/0505273] [INSPIRE].

    ADS  Google Scholar 

  21. M. Gleiser, Oscillons in scalar field theories: applications in higher dimensions and inflation, Int. J. Mod. Phys. D 16 (2007) 219 [hep-th/0602187] [INSPIRE].

    ADS  Article  Google Scholar 

  22. N. Graham and N. Stamatopoulos, Unnatural oscillon lifetimes in an expanding background, Phys. Lett. B 639 (2006) 541 [hep-th/0604134] [INSPIRE].

    ADS  Article  Google Scholar 

  23. M. Hindmarsh and P. Salmi, Numerical investigations of oscillons in 2 dimensions, Phys. Rev. D 74 (2006) 105005 [hep-th/0606016] [INSPIRE].

    ADS  Google Scholar 

  24. G. Fodor, P. Forgacs, P. Grandclement and I. Racz, Oscillons and quasi-breathers in the ϕ 4 Klein-Gordon model, Phys. Rev. D 74 (2006) 124003 [hep-th/0609023] [INSPIRE].

    ADS  Google Scholar 

  25. P.M. Saffin and A. Tranberg, Oscillons and quasi-breathers in D + 1 dimensions, JHEP 01 (2007) 030 [hep-th/0610191] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  26. N. Graham, An electroweak oscillon, Phys. Rev. Lett. 98 (2007) 101801 [Erratum ibid. 98 (2007) 189904] [hep-th/0610267] [INSPIRE].

    ADS  Article  Google Scholar 

  27. E. Farhi et al., Emergence of oscillons in an expanding background, Phys. Rev. D 77 (2008) 085019 [arXiv:0712.3034] [INSPIRE].

    ADS  Google Scholar 

  28. M. Hindmarsh and P. Salmi, Oscillons and domain walls, Phys. Rev. D 77 (2008) 105025 [arXiv:0712.0614] [INSPIRE].

    ADS  Google Scholar 

  29. G. Fodor, P. Forgacs, Z. Horvath and A. Lukacs, Small amplitude quasi-breathers and oscillons, Phys. Rev. D 78 (2008) 025003 [arXiv:0802.3525] [INSPIRE].

    ADS  Google Scholar 

  30. M. Gleiser and D. Sicilia, Analytical characterization of oscillon energy and lifetime, Phys. Rev. Lett. 101 (2008) 011602 [arXiv:0804.0791] [INSPIRE].

    ADS  Article  Google Scholar 

  31. M. Gleiser and J. Thorarinson, A phase transition in U(1) configuration space: oscillons as remnants of vortex-antivortex annihilation, Phys. Rev. D 76 (2007) 041701 [hep-th/0701294] [INSPIRE].

    ADS  Google Scholar 

  32. M.P. Hertzberg, Quantum radiation of oscillons, Phys. Rev. D 82 (2010) 045022 [arXiv:1003.3459] [INSPIRE].

    ADS  Google Scholar 

  33. P. Salmi and M. Hindmarsh, Radiation and relaxation of oscillons, Phys. Rev. D 85 (2012) 085033 [arXiv:1201.1934] [INSPIRE].

    ADS  Google Scholar 

  34. M.A. Amin, Inflaton fragmentation: emergence of pseudo-stable inflaton lumps (oscillons) after inflation, arXiv:1006.3075 [INSPIRE].

  35. M.A. Amin and D. Shirokoff, Flat-top oscillons in an expanding universe, Phys. Rev. D 81 (2010) 085045 [arXiv:1002.3380] [INSPIRE].

    ADS  Google Scholar 

  36. M.A. Amin, K-oscillons: oscillons with non-canonical kinetic terms, Phys. Rev. D 87 (2013) 123505 [arXiv:1303.1102] [INSPIRE].

    ADS  Google Scholar 

  37. M. Gleiser, N. Graham and N. Stamatopoulos, Generation of coherent structures after cosmic inflation, Phys. Rev. D 83 (2011) 096010 [arXiv:1103.1911] [INSPIRE].

    ADS  Google Scholar 

  38. E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

    ADS  Google Scholar 

  39. L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

    ADS  Google Scholar 

  40. P. Adshead, R. Easther, J. Pritchard and A. Loeb, Inflation and the scale dependent spectral index: prospects and strategies, JCAP 02 (2011) 021 [arXiv:1007.3748] [INSPIRE].

    ADS  Article  Google Scholar 

  41. M.J. Mortonson, H.V. Peiris and R. Easther, Bayesian analysis of inflation: parameter estimation for single field models, Phys. Rev. D 83 (2011) 043505 [arXiv:1007.4205] [INSPIRE].

    ADS  Google Scholar 

  42. S. Khlebnikov and I. Tkachev, Relic gravitational waves produced after preheating, Phys. Rev. D 56 (1997) 653 [hep-ph/9701423] [INSPIRE].

    ADS  Google Scholar 

  43. R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04 (2006) 010 [astro-ph/0601617] [INSPIRE].

    ADS  Google Scholar 

  44. R. Easther, J. Giblin, John T. and E.A. Lim, Gravitational wave production at the end of inflation, Phys. Rev. Lett. 99 (2007) 221301 [astro-ph/0612294] [INSPIRE].

    ADS  Article  Google Scholar 

  45. J. García-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014] [INSPIRE].

    ADS  Article  Google Scholar 

  46. R. Easther, J.T. Giblin and E.A. Lim, Gravitational waves from the end of inflation: computational strategies, Phys. Rev. D 77 (2008) 103519 [arXiv:0712.2991] [INSPIRE].

    ADS  Google Scholar 

  47. J. García-Bellido, D.G. Figueroa and A. Sastre, A gravitational wave background from reheating after hybrid inflation, Phys. Rev. D 77 (2008) 043517 [arXiv:0707.0839] [INSPIRE].

    ADS  Google Scholar 

  48. J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, Theory and numerics of gravitational waves from preheating after inflation, Phys. Rev. D 76 (2007) 123517 [arXiv:0707.0875] [INSPIRE].

    ADS  Google Scholar 

  49. L.R. Price and X. Siemens, Stochastic backgrounds of gravitational waves from cosmological sources: techniques and applications to preheating, Phys. Rev. D 78 (2008) 063541 [arXiv:0805.3570] [INSPIRE].

    ADS  Google Scholar 

  50. J.-F. Dufaux, G. Felder, L. Kofman and O. Navros, Gravity waves from tachyonic preheating after hybrid inflation, JCAP 03 (2009) 001 [arXiv:0812.2917] [INSPIRE].

    ADS  Article  Google Scholar 

  51. A. Kusenko and A. Mazumdar, Gravitational waves from fragmentation of a primordial scalar condensate into Q-balls, Phys. Rev. Lett. 101 (2008) 211301 [arXiv:0807.4554] [INSPIRE].

    ADS  Article  Google Scholar 

  52. A. Mazumdar and H. Stoica, Exciting gauge field and gravitons in a brane-anti-brane annihilation, Phys. Rev. Lett. 102 (2009) 091601 [arXiv:0807.2570] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  53. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    ADS  Article  Google Scholar 

  54. J. Martin and C. Ringeval, First CMB constraints on the inflationary reheating temperature, Phys. Rev. D 82 (2010) 023511 [arXiv:1004.5525] [INSPIRE].

    ADS  Google Scholar 

  55. Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].

  56. X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].

    ADS  Google Scholar 

  57. R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

    ADS  Google Scholar 

  58. R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  59. R. Easther, H. Finkel and N. Roth, PSpectRe: a Pseudo-Spectral code for (p)Reheating, JCAP 10 (2010) 025 [arXiv:1005.1921] [INSPIRE].

    ADS  Article  Google Scholar 

  60. A.V. Frolov, DEFROST: a new code for simulating preheating after inflation, JCAP 11 (2008) 009 [arXiv:0809.4904] [INSPIRE].

    ADS  Article  Google Scholar 

  61. Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].

  62. H. Peiris, R. Easther and R. Flauger, Constraining monodromy inflation, JCAP 09 (2013) 018 [arXiv:1303.2616] [INSPIRE].

    ADS  Article  Google Scholar 

  63. R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].

    ADS  Article  Google Scholar 

  64. S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, U.S.A. (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Yong Zhou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, SY., Copeland, E.J., Easther, R. et al. Gravitational waves from oscillon preheating. J. High Energ. Phys. 2013, 26 (2013). https://doi.org/10.1007/JHEP10(2013)026

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)026

Keywords

  • Cosmology of Theories beyond the SM
  • Solitons Monopoles and Instantons
  • Nonperturbative Effects