Skip to main content
Log in

Renormalization group improved bottom mass from \( \varUpsilon \) sum rules at NNLL order

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We determine the bottom quark mass from non-relativistic large-n \( \varUpsilon \) sum rules with renormalization group improvement at next-to-next-to-leading logarithmic order. We compute the theoretical moments within the vNRQCD formalism and account for the summation of powers of the Coulomb singularities as well as of logarithmic terms proportional to powers of α s ln(n). The renormalization group improvement leads to a substantial stabilization of the theoretical moments compared to previous fixed-order analyses, which did not account for the systematic treatment of the logarithmic α s ln(n) terms, and allows for reliable single moment fits. For the current world average of the strong coupling (α s (M Z) = 0.1183 ± 0.0010) we obtain \( M_{\mathrm{b}}^{1S } \) = 4.755 ± 0.057pert ± 0.009α s  ± 0.003exp GeV for the bottom 1S mass and \( {{\overline{m}}_{\mathrm{b}}}\left( {{{\overline{m}}_{\mathrm{b}}}} \right) \) = 4.235 ± 0.055pert ± 0.003exp GeV for the bottom \( \overline{\mathrm{MS}} \) mass, where we have quoted the perturbative error and the uncertainties from the strong coupling and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Voloshin, On dynamics of heavy quarks in nonperturbative QCD vacuum, Nucl. Phys. B 154 (1979) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Reinders, H. Rubinstein and S. Yazaki, QCD sum rules for heavy quark systems, Nucl. Phys. B 186 (1981) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241] [INSPIRE].

    ADS  Google Scholar 

  4. A. Pineda, Determination of the bottom quark mass from the \( \varUpsilon \)(1S) system, JHEP 06 (2001) 022 [hep-ph/0105008] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Hoang and T. Teubner, Top quark pair production close to threshold: top mass, width and momentum distribution, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468] [INSPIRE].

    ADS  Google Scholar 

  6. V. Novikov et al., Charmonium and gluons: basic experimental facts and theoretical introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Voloshin, Precision determination of α s and m b from QCD sum rules for \( b\overline{b} \), Int. J. Mod. Phys. A 10 (1995) 2865 [hep-ph/9502224] [INSPIRE].

    ADS  Google Scholar 

  8. G. Corcella and A. Hoang, Uncertainties in the \( \overline{\mathrm{MS}} \) bottom quark mass from relativistic sum rules, Phys. Lett. B 554 (2003) 133 [hep-ph/0212297] [INSPIRE].

    ADS  Google Scholar 

  9. K. Chetyrkin et al., Precise charm- and bottom-quark masses: theoretical and experimental uncertainties, Theor. Math. Phys. 170 (2012) 217 [arXiv:1010.6157] [INSPIRE].

    Article  Google Scholar 

  10. S. Bodenstein, J. Bordes, C. Dominguez, J. Penarrocha and K. Schilcher, Bottom-quark mass from finite energy QCD sum rules, Phys. Rev. D 85 (2012) 034003 [arXiv:1111.5742] [INSPIRE].

    ADS  Google Scholar 

  11. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD predictions for decays of P wave quarkonia, Phys. Rev. D 46 (1992) 1914 [hep-lat/9205006] [INSPIRE].

    ADS  Google Scholar 

  12. A. Hoang et al., Top-anti-top pair production close to threshold: synopsis of recent NNLO results, Eur. Phys. J. direct C 2 (2000) 1 [hep-ph/0001286] [INSPIRE].

    Google Scholar 

  13. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  14. A. Hoang, Bottom quark mass from \( \varUpsilon \) mesons, Phys. Rev. D 59 (1999) 014039 [hep-ph/9803454] [INSPIRE].

    ADS  Google Scholar 

  15. K. Melnikov and A. Yelkhovsky, The b quark low scale running mass from \( \varUpsilon \) sum rules, Phys. Rev. D 59 (1999) 114009 [hep-ph/9805270] [INSPIRE].

    ADS  Google Scholar 

  16. M. Beneke and A. Signer, The bottom \( \overline{\mathrm{MS}} \) quark mass from sum rules at next-to-next-to-leading order, Phys. Lett. B 471 (1999) 233 [hep-ph/9906475] [INSPIRE].

    ADS  Google Scholar 

  17. A. Hoang, 1S and \( \overline{\mathrm{MS}} \) bottom quark masses from \( \varUpsilon \) sum rules, Phys. Rev. D 61 (2000) 034005 [hep-ph/9905550] [INSPIRE].

    ADS  Google Scholar 

  18. A. Hoang, Bottom quark mass from \( \varUpsilon \) mesons: charm mass effects, hep-ph/0008102 [INSPIRE].

  19. M. Battaglia et al., The CKM matrix and the unitarity triangle, proceedings of the workshop, February 13–16, CERN, Switzerland (2002), hep-ph/0304132 [INSPIRE].

  20. A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

    ADS  Google Scholar 

  22. A. Pineda and A. Signer, Renormalization group improved sum rule analysis for the bottom quark mass, Phys. Rev. D 73 (2006) 111501 [hep-ph/0601185] [INSPIRE].

    ADS  Google Scholar 

  23. A. Pineda and A. Signer, Heavy quark pair production near threshold with potential non-relativistic QCD, Nucl. Phys. B 762 (2007) 67 [hep-ph/0607239] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A.H. Hoang and M. Stahlhofen, Two-loop ultrasoft running of the O(v 2) QCD quark potentials, Phys. Rev. D 75 (2007) 054025 [hep-ph/0611292] [INSPIRE].

    ADS  Google Scholar 

  25. A.H. Hoang and M. Stahlhofen, Ultrasoft NLL running of the nonrelativistic O(v) QCD quark potential, JHEP 06 (2011) 088 [arXiv:1102.0269] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Pineda, Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: spin-independent case, Phys. Rev. D 84 (2011) 014012 [arXiv:1101.3269] [INSPIRE].

    ADS  Google Scholar 

  27. A.H. Hoang, Three loop anomalous dimension of the heavy quark pair production current in nonrelativistic QCD, Phys. Rev. D 69 (2004) 034009 [hep-ph/0307376] [INSPIRE].

    ADS  Google Scholar 

  28. A. Penin, A. Pineda, V.A. Smirnov and M. Steinhauser, Spin dependence of heavy quarkonium production and annihilation rates: complete next-to-next-to-leading logarithmic result, Nucl. Phys. B 699 (2004) 183 [Erratum ibid. 829 (2010) 398–399] [hep-ph/0406175] [INSPIRE].

  29. M. Stahlhofen and A. Hoang, NNLL top-antitop production at threshold, arXiv:1111.4486 [INSPIRE].

  30. A. Hoang, A. Manohar, I.W. Stewart and T. Teubner, A renormalization group improved calculation of top quark production near threshold, Phys. Rev. Lett. 86 (2001) 1951 [hep-ph/0011254] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Hoang, A. Manohar, I.W. Stewart and T. Teubner, The threshold \( t\overline{t} \) cross-section at NNLL order, Phys. Rev. D 65 (2002) 014014 [hep-ph/0107144] [INSPIRE].

    ADS  Google Scholar 

  32. A.H. Hoang and I.W. Stewart, Ultrasoft renormalization in nonrelativistic QCD, Phys. Rev. D 67 (2003) 114020 [hep-ph/0209340] [INSPIRE].

    ADS  Google Scholar 

  33. A. Pineda and J. Soto, The renormalization group improvement of the QCD static potentials, Phys. Lett. B 495 (2000) 323 [hep-ph/0007197] [INSPIRE].

    ADS  Google Scholar 

  34. A.H. Hoang, A.V. Manohar and I.W. Stewart, The running Coulomb potential and Lamb shift in QCD, Phys. Rev. D 64 (2001) 014033 [hep-ph/0102257] [INSPIRE].

    ADS  Google Scholar 

  35. A. Hoang and A. Manohar, Charm effects in the \( \overline{\mathrm{MS}} \) bottom quark mass from \( \varUpsilon \) mesons, Phys. Lett. B 483 (2000) 94 [hep-ph/9911461] [INSPIRE].

    ADS  Google Scholar 

  36. A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared renormalization group flow for heavy quark masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A.H. Hoang, Z. Ligeti and A.V. Manohar, B decay and the \( \varUpsilon \) mass, Phys. Rev. Lett. 82 (1999) 277 [hep-ph/9809423] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A.H. Hoang, Z. Ligeti and A.V. Manohar, B decays in the \( \varUpsilon \) expansion, Phys. Rev. D 59 (1999) 074017 [hep-ph/9811239] [INSPIRE].

    ADS  Google Scholar 

  39. S. Bethke et al., Workshop on precision measurements of α s , arXiv:1110.0016 [INSPIRE].

  40. A. Pineda, Next-to-leading nonperturbative calculation in heavy quarkonium, Nucl. Phys. B 494 (1997) 213 [hep-ph/9611388] [INSPIRE].

    Article  ADS  Google Scholar 

  41. BABAR collaboration, B. Aubert et al., Measurement of the e + e \( b\overline{b} \) cross section between \( \sqrt{s}=10.54 \) GeV and 11.20 GeV, Phys. Rev. Lett. 102 (2009) 012001 [arXiv:0809.4120] [INSPIRE].

    Article  ADS  Google Scholar 

  42. K. Chetyrkin, A. Hoang, J.H. Kuhn, M. Steinhauser and T. Teubner, Massive quark production in electron positron annihilation to order \( \alpha_s^2 \), Eur. Phys. J. C 2 (1998) 137 [hep-ph/9711327] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. Dehnadi, A.H. Hoang, V. Mateu and S.M. Zebarjad, Charm mass determination from QCD charmonium sum rules at order \( \alpha_s^3 \), arXiv:1102.2264 [INSPIRE].

  44. J.H. Kuhn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].

    Article  ADS  Google Scholar 

  45. K. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].

    ADS  Google Scholar 

  46. A.V. Manohar and I.W. Stewart, Running of the heavy quark production current and 1/v potential in QCD, Phys. Rev. D 63 (2001) 054004 [hep-ph/0003107] [INSPIRE].

    ADS  Google Scholar 

  47. A. Pineda, Next-to-leading log renormalization group running in heavy-quarkonium creation and annihilation, Phys. Rev. D 66 (2002) 054022 [hep-ph/0110216] [INSPIRE].

    ADS  Google Scholar 

  48. A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v 2 : one loop matching conditions, Phys. Rev. D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].

    ADS  Google Scholar 

  49. B.A. Kniehl, A.A. Penin, M. Steinhauser and V.A. Smirnov, Non-abelian \( \alpha_s^3 \) /(m q R 2) heavy quark anti-quark potential, Phys. Rev. D 65 (2002) 091503 [hep-ph/0106135] [INSPIRE].

    ADS  Google Scholar 

  50. A. Hoang and T. Teubner, Top quark pair production at threshold: complete next-to-next-to-leading order relativistic corrections, Phys. Rev. D 58 (1998) 114023 [hep-ph/9801397] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Ruiz-Femenía.

Additional information

ArXiv ePrint: 1209.0450

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang, A.H., Ruiz-Femenía, P. & Stahlhofen, M. Renormalization group improved bottom mass from \( \varUpsilon \) sum rules at NNLL order. J. High Energ. Phys. 2012, 188 (2012). https://doi.org/10.1007/JHEP10(2012)188

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)188

Keywords

Navigation