Skip to main content
Log in

Can spacetime curvature induced corrections to Lamb shift be observable?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The Lamb shift results from the coupling of an atom to vacuum fluctuations of quantum fields, so corrections are expected to arise when the spacetime is curved since the vacuum fluctuations are modified by the presence of spacetime curvature. Here, we calculate the curvature-induced correction to the Lamb shift outside a spherically symmetric object and demonstrate that this correction can be remarkably significant outside a compact massive astrophysical body. For instance, for a neutron star or a stellar mass black hole, the correction is ~ 25% at a radial distance of 4GM/c 2, ~ 16% at 10GM/c 2 and as large as ~ 1.6% even at 100GM/c 2, where M is the mass of the object, G the Newtonian constant, and c the speed of light. In principle, we can look at the spectra from a distant compact super-massive body to find such corrections. Therefore, our results suggest a possible way of detecting fundamental quantum effects in astronomical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Unruh, Experimental black hole evaporation, Phys. Rev. Lett. 46 (1981) 1351 [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Garay, J. Anglin, J. Cirac and P. Zoller, Sonic analog of gravitational black holes in Bose-Einstein condensates, Phys. Rev. Lett. 85 (2000) 4643 [gr-qc/0002015] [INSPIRE].

    Article  ADS  Google Scholar 

  3. U. Leonhardt, A laboratory analogue of the event horizon using slow light in an atomic medium, Nature 415 (2002) 406.

    Article  ADS  Google Scholar 

  4. T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, et al., Fiber-optical analogue of the event horizon, Science 319 (2008) 1367 [arXiv:0711.4796] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P.D. Nation, M.P. Blencowe, A.J. Rimberg and E. Buks, Analogue Hawking radiation in a dc-SQUID array transmission line, Phys. Rev. Lett. 103 (2009) 087004.

    Article  ADS  Google Scholar 

  6. W.E. Lamb and R.C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72 (1947) 241 [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Pohl, A. Antognini, F. Nez, F.D. Amaro, F. Biraben, et al., The size of the proton, Nature 466 (2010) 213 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, et al., New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett. 92 (2004) 230802 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Niering et al., Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock, Phys. Rev. Lett. 84 (2000) 5496.

    Article  ADS  Google Scholar 

  10. B. de Beauvoir et al., Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts, Eur. Phys. J. D 12 (2000) 61.

    ADS  Google Scholar 

  11. C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, et al., Optical frequency measurement of the 2S-12D transitions in hydrogen and deuterium: Rydberg constant and Lamb shift determinations, Phys. Rev. Lett. 82 (1999) 4960 [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. Meschede, W. Jhe and E.A. Hinds, Radiative properties of atoms near a conducting plane: an old problem in a new light, Phys. Rev. A 41 (1990) 1587.

    ADS  Google Scholar 

  13. G. Barton, Temperature dependence of the Lamb shift, Phys. Rev. A 5 (1972) 468 [INSPIRE].

    ADS  Google Scholar 

  14. P.L. Knight, Effects of external fields on the Lamb shift, J. Phys. A 5 (1972) 417.

    ADS  Google Scholar 

  15. J.W. Farley and W.H. Wing, Accurate calculation of dynamic Stark shifts and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydrogen, helium, and alkali-metal atoms, Phys. Rev. A 23 (1981) 2397.

    ADS  Google Scholar 

  16. Z. Zhu and H. Yu, Modification of energy shifts of atoms by the presence of a boundary in a thermal bath and the Casimir-Polder force, Phys. Rev. A 79 (2009) 032902.

    ADS  Google Scholar 

  17. J. Audretsch and R.Müller, Radiative energy shifts of an accelerated two-level system, Phys. Rev. A 52 (1995) 629.

    ADS  Google Scholar 

  18. R. Passante, Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics, Phys. Rev. A 57 (1998) 1590.

    ADS  Google Scholar 

  19. L. Rizzuto, Casimir-Polder interaction between an accelerated two-level system and an infinite plate, Phys. Rev. A 76 (2007) 062114.

    ADS  Google Scholar 

  20. Z. Zhu and H.W. Yu, Position dependent energy level shifts of an accelerated atom in the presence of a boundary, Phys. Rev. A 82 (2010) 042108 [arXiv:1009.1425] [INSPIRE].

    ADS  Google Scholar 

  21. M. Baranger, H. Bethe and R. Feynman, Relativistic correction to the Lamb shift, Phys. Rev. 92 (1953) 482 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. T.A. Welton, Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field, Phys. Rev. 74 (1948) 1157 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. A.J. Layzer, New theoretical value for the Lamb shift, Phys. Rev. Lett. 4 (1960) 580 [INSPIRE].

    Article  ADS  Google Scholar 

  24. G.W. Erickson, Improved Lamb-shift calculation for all values of Z, Phys. Rev. Lett. 27 (1971) 780.

    Article  ADS  Google Scholar 

  25. E. Riis et al., Lamb shifts and hyperfine structure in 6 Li + and 7 Li + : theory and experiment, Phys. Rev. A 49 (1994) 207.

    ADS  Google Scholar 

  26. J. Dalibard, J. Dupont-Roc and C. Cohen-Tannoudji, Vacuum fluctuations and radiation reaction: identification of their respective contributions, J. Phys. France 43 (1982) 1617.

    Article  Google Scholar 

  27. J. Dalibard, J. Dupont-Roc and C. Cohen-Tannoudji, Dynamics of a small system coupled to a reservoir: reservoir fluctuations and self-reaction, J. Phys. France 45 (1984) 637.

    Article  MathSciNet  Google Scholar 

  28. D.G. Boulware, Quantum field theory in Schwarzschild and Rindler spaces, Phys. Rev. D 11 (1975) 1404 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. B.S. DeWitt, Quantum field theory in curved space-time, Phys. Rept. 19 (1975) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.M. Christensen and S.A. Fulling, Trace anomalies and the Hawking effect, Phys. Rev. D 15 (1977) 2088.

    ADS  Google Scholar 

  31. P. Candelas, Vacuum polarization in Schwarzschild space-time, Phys. Rev. D 21 (1980) 2185 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. H. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72 (1947) 339 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. N.M. Kroll and W.E. Lamb, Jr., On the self-energy of a bound electron, Phys. Rev. 75 (1949) 388.

    Article  ADS  MATH  Google Scholar 

  34. J. French and V. Weisskopf, The electromagnetic shift of energy levels, Phys. Rev. 75 (1949) 1240 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. B. Jensen and A. Ottewill, Renormalized electromagnetic stress tensor in Schwarzschild space-time, Phys. Rev. D 39 (1989) 1130 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. B. Jensen, J. McLaughlin and A. Ottewill, Anisotropy of the quantum thermal state in Schwarzschild space-time, Phys. Rev. D 45 (1992) 3002 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].

    ADS  Google Scholar 

  38. W. Zhou and H.W. Yu, Lamb shift for static atoms outside a Schwarzschild black hole, Phys. Rev. D 82 (2010) 104030 [arXiv:1011.1619] [INSPIRE].

    ADS  Google Scholar 

  39. H. Casimir and D. Polder, The influence of retardation on the London-van der Waals forces, Phys. Rev. 73 (1948) 360 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. Z. Zhu and H. Yu, Modification of energy shifts of atoms by the presence of a boundary in a thermal bath and the Casimir-Polder force, Phys. Rev. A 79 (2009) 032902. [Erratum ibid. A 85 (2012) 019911(E)].

    Google Scholar 

  41. J.M. Bardeen, W.H. Press and S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction and scalar synchrotron radiation, Astrophys. J., 178 (1972) 347.

    Article  ADS  Google Scholar 

  42. J.R. Letaw, Stationary world lines and the vacuum excitation of noninertial detectors, Phys. Rev. D 23 (1981) 1709 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. J. Bell and J. Leinaas, Electrons as accelerated thermometers, Nucl. Phys. B 212 (1983) 131 [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Takagi, Vacuum noise and stress induced by uniform acceleration, Prog. Teor. Phys. Suppl. 88 (1986) 1.

    Article  ADS  Google Scholar 

  45. J. Audretsch, R. Muller and M. Holzmann, Generalized Unruh effect and Lamb shift for atoms on arbitrary stationary trajectories, Class. Quant. Grav. 12 (1995) 2927 [quant-ph/9510025] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. I.S. Gradshteyn and I.M. Ryzhik, Tabel of integrals, series, and produncts, Academic Press, New York U.S.A. (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yu.

Additional information

ArXiv ePrint: 1204.2015

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Yu, H. Can spacetime curvature induced corrections to Lamb shift be observable?. J. High Energ. Phys. 2012, 172 (2012). https://doi.org/10.1007/JHEP10(2012)172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)172

Keywords

Navigation