Skip to main content

Advertisement

SpringerLink
Building an explicit de Sitter
Download PDF
Download PDF
  • Open Access
  • Published: 25 October 2012

Building an explicit de Sitter

  • Jan Louis1,2,
  • Markus Rummel1,
  • Roberto Valandro1 &
  • …
  • Alexander Westphal3 

Journal of High Energy Physics volume 2012, Article number: 163 (2012) Cite this article

  • 492 Accesses

  • 89 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kähler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kähler uplifting on a two-parameter model on \( \mathbb{CP}_{11169}^4 \), by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kähler moduli.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  4. L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE]

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. C. Caviezel et al., The Effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  Google Scholar 

  12. C. Caviezel et al., On the cosmology of Type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

    ADS  Google Scholar 

  14. J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, arXiv:0908.0756 [INSPIRE].

  15. X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].

    ADS  Google Scholar 

  17. V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Burgess, R. Kallosh and F. Quevedo, de Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. O. Lebedev, H.P. Nilles and M. Ratz, de Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Cremades, M.-P. Garcia del Moral, F. Quevedo and K. Suruliz, Moduli stabilisation and de Sitter string vacua from magnetised D7 branes, JHEP 05 (2007) 100 [hep-th/0701154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Krippendorf and F. Quevedo, Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation, JHEP 11 (2009) 039 [arXiv:0901.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP 01 (2012) 020 [arXiv:1107.2115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, de Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys. B 602 (2001) 307 [hep-th/0005276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Marsh, L. McAllister and T. Wrase, The Wasteland of random supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. X. Chen, G. Shiu, Y. Sumitomo and S.H. Tye, A global view on the search for de-Sitter vacua in (type IIA) string theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random supergravity, arXiv:1207.2763 [INSPIRE].

  33. Y. Sumitomo and S.-H.H. Tye, A stringy mechanism for a small cosmological constant, JCAP 08 (2012) 032 [arXiv:1204.5177] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Y. Sumitomo and S.-H.H. Tye, A Stringy Mechanism for A Small Cosmological Constant, in The 3rd UTQuest workshop ExDiP 2012 Superstring Cosmophysics, Obihiro Japan (2012).

  35. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) 7345 [hep-th/9702165] [INSPIRE].

    ADS  Google Scholar 

  37. M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Collinucci, New F-theory lifts, JHEP 08 (2009) 076 [arXiv:0812.0175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Collinucci, New F-theory lifts. II. Permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, JHEP 12 (2011) 045 [arXiv:1107.3732] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. Phys. B 732 (2006) 243 [hep-th/0501139] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A.P. Braun, A. Hebecker, C. Lüdeling and R. Valandro, Fixing D7 Brane Positions by F-theory Fluxes, Nucl. Phys. B 815 (2009) 256 [arXiv:0811.2416] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  49. A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    MathSciNet  Google Scholar 

  51. S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].

  52. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Kreuzer and H. Skarke, PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun. 157 (2004) 87 [math/0204356] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. A.P. Braun and N.-O. Walliser, A new offspring of PALP, arXiv:1106.4529 [INSPIRE].

  56. A.P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALP — a User Manual, arXiv:1205.4147 [INSPIRE].

  57. J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Lecture Notes in Mathematics. Vol. 476: Modular Functions of One Variable IV, Springer, Heidelberg Germany (1975), pg. 33.

  58. M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [INSPIRE].

  60. K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. S. Krause, C. Mayrhofer and T. Weigand, Gauge Fluxes in F-theory and Type IIB Orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Gray et al., Calabi-Yau Manifolds with Large Volume Vacua, arXiv:1207.5801 [INSPIRE].

  63. R. Blumenhagen, S. Moster and E. Plauschinn, Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type IIB Orientifold Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Collinucci, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Four-modulus ’Swiss Cheese’ chiral models, JHEP 07 (2009) 074 [arXiv:0811.4599] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP 05 (2000) 032 [hep-th/9912279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. A.M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].

  70. F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 847 [hep-th/9805190] [INSPIRE].

    MathSciNet  Google Scholar 

  72. R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/, cohomCalg, High-performance line bundle cohomology computation based on [72] (2010).

  74. S. Katz, On the finiteness of rational curves on quintic threefolds, Compos. Math. 60 (1986) 151.

    MATH  Google Scholar 

  75. M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos Terms in String Theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718 (2005) 203 [hep-th/0502059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. S.H. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, Nucl. Phys. B 497 (1997) 196 [hep-th/9611090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. R. Kallosh, A.-K. Kashani-Poor and A. Tomasiello, Counting fermionic zero modes on M5 with fluxes, JHEP 06 (2005) 069 [hep-th/0503138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. D. Martinez Pedrera, D. Mehta, M. Rummel and A. Westphal, to appear.

  83. D. Mehta, Y.-H. He and J.D. Hauenstein, Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories, JHEP 07 (2012) 018 [arXiv:1203.4235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. C. Mayrhofer, Compactifications of Type IIB String Theory and F-Theory Models by Means of Toric Geometry, Ph.D. Thesis, Vienna University of Technology, Vienna Austria (2010).

  85. A. Collinucci and R. Savelli, On flux quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. A. Collinucci and R. Savelli, On flux quantization in f-theory II: unitary and symplectic gauge groups, JHEP 08 (2012) 094 [arXiv:1203.4542] [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Tatar and W. Walters, GUT theories from Calabi-Yau 4-folds with SO(10) Singularities, arXiv:1206.5090 [INSPIRE].

  88. P. Candelas, E. Perevalov and G. Rajesh, Toric geometry and enhanced gauge symmetry of F-theory/heterotic vacua, Nucl. Phys. B 507 (1997) 445 [hep-th/9704097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. II. Institut für Theoretische Physik der Universität Hamburg, D-22761, Hamburg, Germany

    Jan Louis, Markus Rummel & Roberto Valandro

  2. Zentrum für Mathematische Physik, Universität Hamburg, D-22761, Hamburg, Germany

    Jan Louis

  3. Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603, Hamburg, Germany

    Alexander Westphal

Authors
  1. Jan Louis
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Markus Rummel
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Roberto Valandro
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alexander Westphal
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Markus Rummel.

Additional information

ArXiv ePrint: 1208.3208

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Louis, J., Rummel, M., Valandro, R. et al. Building an explicit de Sitter. J. High Energ. Phys. 2012, 163 (2012). https://doi.org/10.1007/JHEP10(2012)163

Download citation

  • Received: 26 August 2012

  • Accepted: 06 October 2012

  • Published: 25 October 2012

  • DOI: https://doi.org/10.1007/JHEP10(2012)163

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flux compactifications
  • F-Theory
  • dS vacua in string theory
  • Superstring Vacua
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.