Skip to main content
Log in

Background independent holographic description: from matrix field theory to quantum gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a local renormalization group procedure where length scale is changed in spacetime dependent way. Combining this scheme with an earlier observation that high energy modes in renormalization group play the role of dynamical sources for low energy modes at each scale, we provide a prescription to derive background independent holographic duals for field theories. From a first principle construction, it is shown that the holographic theory dual to a D-dimensional matrix field theory is a (D + 1)-dimensional quantum theory of gravity coupled with matter fields of various spins. The gravitational theory has (D + 1) first-class constraints which generate local spacetime transformations in the bulk. The (D + 1)-dimensional diffeomorphism invariance is a consequence of the freedom to choose different local RG schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].

  5. S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. R. Gopakumar, From free fields to AdS, Phys. Rev. D 70 (2004) 025009 [hep-th/0308184] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. R. Gopakumar, From free fields to AdS. 2., Phys. Rev. D 70 (2004) 025010 [hep-th/0402063] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S.-S. Lee, Holographic description of quantum field theory, Nucl. Phys. B 832 (2010) 567 [arXiv:0912.5223] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CF T 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].

    ADS  Google Scholar 

  11. I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].

    ADS  Google Scholar 

  14. R. Sundrum, From Fixed Points to the Fifth Dimension, arXiv:1106.4501 [INSPIRE].

  15. S.-S. Lee, Holographic description of large-N gauge theory, Nucl. Phys. B 851 (2011) 143 [arXiv:1011.1474] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Radicevic, Connecting the Holographic and Wilsonian Renormalization Groups, JHEP 12 (2011) 023 [arXiv:1105.5825] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.-S. Lee, Holographic Matter: Deconfined String at Criticality, Nucl. Phys. B 862 (2012) 781 [arXiv:1108.2253] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  19. M. Li, A Note on relation between holographic RG equation and Polchinskis RG equation, Nucl. Phys. B 579 (2000) 525 [hep-th/0001193] [INSPIRE].

    Article  ADS  Google Scholar 

  20. X.-G. Wen, Quantum orders and symmetric spin liquids, Phys. Rev. B 65 (2002) 165113 [INSPIRE].

    ADS  Google Scholar 

  21. A. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [INSPIRE].

    ADS  Google Scholar 

  22. J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1 (2003) 1 [hep-th/0110026] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Sik Lee.

Additional information

ArXiv ePrint: 1204.1780

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SS. Background independent holographic description: from matrix field theory to quantum gravity. J. High Energ. Phys. 2012, 160 (2012). https://doi.org/10.1007/JHEP10(2012)160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)160

Keywords

Navigation