Skip to main content

Voisin-Borcea manifolds and heterotic orbifold models

Abstract

We study the relation between a heterotic \({T^6 \left/ {{{{\mathbb{Z}}_6}}} \right.}\) orbifold model and a compactification on a smooth Voisin-Borcea Calabi-Yau three-fold with non-trivial line bundles. This orbifold can be seen as a \({{\mathbb{Z}}_2}\) quotient of \({T^4 \left/ {{{{\mathbb{Z}}_3}}} \right.}\times {T^2}\). We consider a two-step resolution, whose intermediate step is \(\left( {K3\times {T^2}} \right){{\mathbb{Z}}_2}\). This allows us to identify the massless twisted states which correspond to the geometric Kähler and complex structure moduli. We work out the match of the two models when non-zero expectation values are given to all twisted geometric moduli. We find that even though the orbifold gauge group contains an SO(10) factor, a possible GUT group, the subgroup after higgsing does not even include the standard model gauge group. Moreover, after higgsing, the massless spectrum is non-chiral under the surviving gauge group.

References

  1. L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  2. L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2, Nucl. Phys. B 274 (1986) 285 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  3. Y. Katsuki et al., Z N orbifold models, Nucl. Phys. B 341 (1990) 611 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  4. T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z 6 orbifold, Nucl. Phys. B 704 (2005) 3 [hep-ph/0409098] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  5. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  6. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].

    ADS  Article  Google Scholar 

  7. O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].

    ADS  Google Scholar 

  8. O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z 6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M. Blaszczyk et al., A Z 2 × Z 2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. G. Honecker and M. Trapletti, Merging heterotic orbifolds and K3 compactifications with line bundles, JHEP 01 (2007) 051 [hep-th/0612030] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. S. Groot Nibbelink, M. Trapletti and M. Walter, Resolutions of C n /Z N orbifolds, their U(1) bundles and applications to string model building, JHEP 03 (2007) 035 [hep-th/0701227] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. S. Nibbelink Groot, T.-W. Ha and M. Trapletti, Toric resolutions of heterotic orbifolds, Phys. Rev. D 77 (2008) 026002 [arXiv:0707.1597] [INSPIRE].

    ADS  Google Scholar 

  13. S. Nibbelink Groot, D. Klevers, F. Ploger, M. Trapletti and P.K. Vaudrevange, Compact heterotic orbifolds in blow-up, JHEP 04 (2008) 060 [arXiv:0802.2809] [INSPIRE].

    Article  Google Scholar 

  14. S. Nibbelink Groot, J. Held, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic Z 6−II MSSM orbifolds in blowup, JHEP 03 (2009) 005 [arXiv:0901.3059] [INSPIRE].

    Article  Google Scholar 

  15. M. Blaszczyk, S. Nibbelink Groot, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic MSSM on a resolved orbifold, JHEP 09 (2010) 065 [arXiv:1007.0203] [INSPIRE].

    ADS  Article  Google Scholar 

  16. M. Blaszczyk, N.G. Cabo Bizet, H.P. Nilles and F. Ruhle, A perfect match of MSSM-like orbifold and resolution models via anomalies, JHEP 10 (2011) 117 [arXiv:1108.0667] [INSPIRE].

    ADS  Article  Google Scholar 

  17. D. Lüst, S. Reffert, E. Scheidegger and S. Stieberger, Resolved toroidal orbifolds and their orientifolds, Adv. Theor. Math. Phys. 12 (2008) 67 [hep-th/0609014] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  18. S. Nibbelink Groot, Heterotic orbifold resolutions as (2, 0) gauged linear σ-models, Fortsch. Phys. 59 (2011) 454 [arXiv:1012.3350] [INSPIRE].

    MATH  ADS  Article  Google Scholar 

  19. M. Blaszczyk, S. Nibbelink Groot and F. Ruehle, Green-Schwarz mechanism in heterotic (2, 0) gauged linear σ-models: torsion and N S5 branes, JHEP 08 (2011) 083 [arXiv:1107.0320] [INSPIRE].

    ADS  Article  Google Scholar 

  20. M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Gauged linear σ-models for toroidal orbifold resolutions, JHEP 05 (2012) 053 [arXiv:1111.5852] [INSPIRE].

    ADS  Article  Google Scholar 

  21. W. Buchmüller, C. Lüdeling and J. Schmidt, Local SU(5) unification from the heterotic string, JHEP 09 (2007) 113 [arXiv:0707.1651] [INSPIRE].

    ADS  Article  Google Scholar 

  22. W. Buchmüller and J. Schmidt, Higgs versus matter in the heterotic landscape, Nucl. Phys. B 807 (2009) 265 [arXiv:0807.1046] [INSPIRE].

    ADS  Article  Google Scholar 

  23. C. Voisin, Miroirs et involutions sur les surfaces K3 (in French), in Journées de Géométrie Algébrique dOrsay, France July 1992.

  24. C. Borcea, K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, in Mirror symmetry II, B. Greene and S.T. Yau eds., AMS/IP Stud. Adv. Math. 1, American Mathematical Society, Providence U.S.A. (1997), pg. 717 [INSPIRE].

  25. G. Honecker, Massive U(1)s and heterotic five-branes on K3, Nucl. Phys. B 748 (2006) 126 [hep-th/0602101] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  26. S. Nibbelink Groot, F.P. Correia and M. Trapletti, Non-Abelian bundles on heterotic non-compact K3 orbifold blowups, JHEP 11 (2008) 044 [arXiv:0809.4430] [INSPIRE].

    Article  Google Scholar 

  27. J. Louis, M. Schasny and R. Valandro, 6D effective action of heterotic compactification on K3 with nontrivial gauge bundles, JHEP 04 (2012) 028 [arXiv:1112.5106][INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  28. P.S. Aspinwall, K3 surfaces and string duality, hep-th/9611137 [INSPIRE].

  29. K. Dasgupta and S. Mukhi, F-theory at constant coupling, Phys. Lett. B 385 (1996) 125 [hep-th/9606044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. L.J. Hall, H. Murayama and Y. Nomura, Wilson lines and symmetry breaking on orbifolds, Nucl. Phys. B 645 (2002) 85 [hep-th/0107245] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  31. F. Hirzebruch, Topological methods in algebraic geometry, 3rd edition, Grundlehren Math. Wiss. 131, Springer-Verlag, New York U.S.A. (1978).

    Google Scholar 

  32. J. Schmidt, Local grand unification in the heterotic landscape, Fortsch. Phys. 58 (2010) 3 [arXiv:0906.5501] [INSPIRE].

    MATH  ADS  Article  Google Scholar 

  33. H.P. Nilles, S. Ramos-Sanchez, P.K. Vaudrevange and A. Wingerter, The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  34. F. Buccella, J. Derendinger, S. Ferrara and C.A. Savoy, Patterns of symmetry breaking in supersymmetric gauge theories, Phys. Lett. B 115 (1982) 375 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. J. Casas, E. Katehou and C. Muñoz, U(1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys. B 317 (1989) 171 [INSPIRE].

    ADS  Article  Google Scholar 

  36. G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett and P. Langacker, Classification of flat directions in perturbative heterotic superstring vacua with anomalous U(1), Nucl. Phys. B 525 (1998) 3 [hep-th/9711178] [INSPIRE].

    ADS  Article  Google Scholar 

  37. G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett and P. Langacker, Flat directions in three generation free fermionic string models, Nucl. Phys. B 545 (1999) 47 [hep-th/9805133] [INSPIRE].

    ADS  Article  Google Scholar 

  38. A.P. Braun, R. Ebert, A. Hebecker and R. Valandro, Weierstrass meets Enriques, JHEP 02 (2010) 077 [arXiv:0907.2691] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  39. V.V. Nikulin, On factor groups of the automorphism group of hyperbolic forms modulo subgroups generated by 2-reections, Sov. Math. Dokl. 20 (1979) 1156.

    MATH  Google Scholar 

  40. V.V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reections, Algebro-geometric applications, J. Soviet Math. 22 (1983) 1401.

    MATH  Article  Google Scholar 

  41. V.V. Nikulin, Discrete reection groups in Lobachevsky spaces and algebraic surfaces, in Proceedings of the International Congress of Mathematicians, Berkeley U.S.A. 1986, volume 1, American Mathematical Society, Providence U.S.A. (1988).

    Google Scholar 

  42. V.V. Nikulin, Discrete reection groups in Lobachevsky spaces and algebraic surfaces, in Proceedings of the International Congress of Mathematicians, Berkeley U.S.A. 1986, volume 2, American Mathematical Society, Providence U.S.A. (1988).

    Google Scholar 

  43. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  44. R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  45. J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  46. E. Witten, Global anomalies in string theory, Print-85-0620, Princeton U.S.A. (1985) [INSPIRE].

  47. D. Freed, Determinants, torsion, and strings, Commun. Math. Phys. 107 (1986) 483 [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  48. T. Weigand, Compactifications of the heterotic string with unitary bundles, Fortsch. Phys. 54 (2006) 963 [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  49. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987) [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Valandro.

Additional information

ArXiv ePrint: 1208.0704

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Buchmuller, W., Louis, J., Schmidt, J. et al. Voisin-Borcea manifolds and heterotic orbifold models. J. High Energ. Phys. 2012, 114 (2012). https://doi.org/10.1007/JHEP10(2012)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)114

Keywords

  • Superstrings and Heterotic Strings
  • Superstring Vacua