Abstract
We use the Euler-Maclaurin formula and the Feynman-Kac formula to extend our previous method of computation of the spectral action based on the Poisson summation formula. We show how to compute directly the spectral action for the general case of Robertson-Walker metrics. We check the terms of the expansion up to a 6 against the known universal formulas of Gilkey and compute the expansion up to a 10 using our direct method.
References
P. Amsterdamski, A. Berkin and D. O’Connor, b(8) ’Hamidew’ coefficient for a scalar field, Class. Quant. Grav. 6 (1989) 1981 [INSPIRE].
I. Avramidi, The Covariant technique for the calculation of the heat kernel asymptotic expansion, Phys. Lett. B 238 (1990) 92 [INSPIRE].
T. Branson and P. Gilkey, Residues for the eta function for an operator of Dirac type with local boundary conditions, Diff. Geom. Appl. 2 (1992) 249.
T. Branson and P. Gilkey, Residues of the eta function for an operator of Dirac type, J. Funct. Anal. 108 (1992) 47.
T.P. Branson, P.B. Gilkey and D.V. Vassilevich, Vacuum expectation value asymptotics for second order differential operators on manifolds with boundary, J. Math. Phys. 39 (1998) 1040 [Erratum ibid. 41 (2000) 3301] [hep-th/9702178] [INSPIRE].
R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
A.H. Chamseddine and A. Connes, Universal formula for noncommutative geometry actions: Unification of gravity and the standard model, Phys. Rev. Lett. 77 (1996) 4868 [INSPIRE].
A.H. Chamseddine and A. Connes, The Spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [INSPIRE].
A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].
A.H. Chamseddine and A. Connes, Scale invariance in the spectral action, J. Math. Phys. 47 (2006) 063504 [hep-th/0512169] [INSPIRE].
A.H. Chamseddine and A. Connes, Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model, Phys. Rev. Lett. 99 (2007) 191601 [arXiv:0706.3690] [INSPIRE].
A.H. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys. 58 (2008) 38 [arXiv:0706.3688] [INSPIRE].
A.H. Chamseddine and A. Connes, Quantum Gravity Boundary Terms from Spectral Action, Phys. Rev. Lett. 99 (2007) 071302 [arXiv:0705.1786] [INSPIRE].
A.H. Chamseddine and A. Connes, The Uncanny Precision of the Spectral Action, Commun. Math. Phys. 293 (2010) 867 [arXiv:0812.0165] [INSPIRE].
P. Gilkey, Invariance Theory, the heat equation and the Atiyah-Singer Index theorem, second edition, CRC press, Boca Raton U.S.A. (1994).
P. Gilkey, Asymptotic Formulae in Spectral Geometry, CRC press, Boca Raton U.S.A. (2004).
M. Marcolli and E. Pierpaoli, Early Universe models from Noncommutative Geometry, Adv. Theor. Math. Phys. 14 (2010) 1373 [arXiv:0908.3683] [INSPIRE].
M. Marcolli, E. Pierpaoli and K. Teh, The spectral action and cosmic topology, Commun. Math. Phys. 304 (2011) 125 [arXiv:1005.2256] [INSPIRE].
C. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman, New York U.S.A. (1974).
W. Nelson and M. Sakellariadou, Cosmology and the Noncommutative approach to the Standard Model, Phys. Rev. D 81 (2010) 085038 [arXiv:0812.1657] [INSPIRE].
W. Nelson and M. Sakellariadou, Natural inflation mechanism in asymptotic noncommutative geometry, Phys. Lett. B 680 (2009) 263 [arXiv:0903.1520] [INSPIRE].
B. Simon, Pure and Applied Mathematics. Vol. 86: Functional integration and quantum physics, Academic Press, Inc., New York U.S.A. (1979).
A.E. van de Ven, Index free heat kernel coefficients, Class. Quant. Grav. 15 (1998) 2311 [hep-th/9708152] [INSPIRE].
D. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1105.4637
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Chamseddine, A.H., Connes, A. Spectral action for Robertson-Walker metrics. J. High Energ. Phys. 2012, 101 (2012). https://doi.org/10.1007/JHEP10(2012)101
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2012)101
Keywords
- Non-Commutative Geometry
- Models of Quantum Gravity