Skip to main content

Spectral action for Robertson-Walker metrics

Abstract

We use the Euler-Maclaurin formula and the Feynman-Kac formula to extend our previous method of computation of the spectral action based on the Poisson summation formula. We show how to compute directly the spectral action for the general case of Robertson-Walker metrics. We check the terms of the expansion up to a 6 against the known universal formulas of Gilkey and compute the expansion up to a 10 using our direct method.

References

  1. P. Amsterdamski, A. Berkin and D. O’Connor, b(8) ’Hamidewcoefficient for a scalar field, Class. Quant. Grav. 6 (1989) 1981 [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. I. Avramidi, The Covariant technique for the calculation of the heat kernel asymptotic expansion, Phys. Lett. B 238 (1990) 92 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. T. Branson and P. Gilkey, Residues for the eta function for an operator of Dirac type with local boundary conditions, Diff. Geom. Appl. 2 (1992) 249.

    MathSciNet  MATH  Article  Google Scholar 

  4. T. Branson and P. Gilkey, Residues of the eta function for an operator of Dirac type, J. Funct. Anal. 108 (1992) 47.

    MathSciNet  MATH  Article  Google Scholar 

  5. T.P. Branson, P.B. Gilkey and D.V. Vassilevich, Vacuum expectation value asymptotics for second order differential operators on manifolds with boundary, J. Math. Phys. 39 (1998) 1040 [Erratum ibid. 41 (2000) 3301] [hep-th/9702178] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  6. R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. A.H. Chamseddine and A. Connes, Universal formula for noncommutative geometry actions: Unification of gravity and the standard model, Phys. Rev. Lett. 77 (1996) 4868 [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  8. A.H. Chamseddine and A. Connes, The Spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  9. A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  10. A.H. Chamseddine and A. Connes, Scale invariance in the spectral action, J. Math. Phys. 47 (2006) 063504 [hep-th/0512169] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. A.H. Chamseddine and A. Connes, Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model, Phys. Rev. Lett. 99 (2007) 191601 [arXiv:0706.3690] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. A.H. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys. 58 (2008) 38 [arXiv:0706.3688] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. A.H. Chamseddine and A. Connes, Quantum Gravity Boundary Terms from Spectral Action, Phys. Rev. Lett. 99 (2007) 071302 [arXiv:0705.1786] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  14. A.H. Chamseddine and A. Connes, The Uncanny Precision of the Spectral Action, Commun. Math. Phys. 293 (2010) 867 [arXiv:0812.0165] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  15. P. Gilkey, Invariance Theory, the heat equation and the Atiyah-Singer Index theorem, second edition, CRC press, Boca Raton U.S.A. (1994).

  16. P. Gilkey, Asymptotic Formulae in Spectral Geometry, CRC press, Boca Raton U.S.A. (2004).

  17. M. Marcolli and E. Pierpaoli, Early Universe models from Noncommutative Geometry, Adv. Theor. Math. Phys. 14 (2010) 1373 [arXiv:0908.3683] [INSPIRE].

    MathSciNet  Google Scholar 

  18. M. Marcolli, E. Pierpaoli and K. Teh, The spectral action and cosmic topology, Commun. Math. Phys. 304 (2011) 125 [arXiv:1005.2256] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  19. C. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman, New York U.S.A. (1974).

  20. W. Nelson and M. Sakellariadou, Cosmology and the Noncommutative approach to the Standard Model, Phys. Rev. D 81 (2010) 085038 [arXiv:0812.1657] [INSPIRE].

    ADS  Google Scholar 

  21. W. Nelson and M. Sakellariadou, Natural inflation mechanism in asymptotic noncommutative geometry, Phys. Lett. B 680 (2009) 263 [arXiv:0903.1520] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. B. Simon, Pure and Applied Mathematics. Vol. 86: Functional integration and quantum physics, Academic Press, Inc., New York U.S.A. (1979).

  23. A.E. van de Ven, Index free heat kernel coefficients, Class. Quant. Grav. 15 (1998) 2311 [hep-th/9708152] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  24. D. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali H. Chamseddine.

Additional information

ArXiv ePrint: 1105.4637

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chamseddine, A.H., Connes, A. Spectral action for Robertson-Walker metrics. J. High Energ. Phys. 2012, 101 (2012). https://doi.org/10.1007/JHEP10(2012)101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)101

Keywords

  • Non-Commutative Geometry
  • Models of Quantum Gravity