Skip to main content

Topologically massive higher spin gravity

Abstract

We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special “chiral” point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the presence of a non-trivial trace and its logarithmic partner at the chiral point. The trace modes carry energy opposite in sign to the traceless modes. The logarithmic partner of the traceless mode carries negative energy indicating an instability at the chiral point. We make several comments on the asymptotic symmetry and its possible deformations at this chiral point and speculate on the higher spin generalisation of LCFT2 dual to the spin-3 massive gravity at the chiral point.

This is a preview of subscription content, access via your institution.

References

  1. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Annals Phys. 281 (2000) 409] [ inSPIRE].

  2. S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [ inSPIRE].

    ADS  Article  Google Scholar 

  3. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [ inSPIRE].

    MathSciNet  Article  Google Scholar 

  4. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [ inSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  6. S. Carlip, S. Deser, A. Waldron and D. Wise, Cosmological topologically massive gravitons and photons, Class. Quant. Grav. 26 (2009) 075008 [arXiv:0803.3998] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  7. W. Li, W. Song and A. Strominger, Comment on ‘Cosmological topological massive gravitons and photons’, arXiv:0805.3101 [ inSPIRE].

  8. D. Grumiller, R. Jackiw and N. Johansson, Canonical analysis of cosmological topologically massive gravity at the chiral point, arXiv:0806.4185 [ inSPIRE].

  9. S. Carlip, S. Deser, A. Waldron and D. Wise, Topologically massive AdS gravity, Phys. Lett. B 666 (2008) 272 [arXiv:0807.0486] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. G. Giribet, M. Kleban and M. Porrati, Topologically massive gravity at the chiral point is not chiral, JHEP 10 (2008) 045 [arXiv:0807.4703] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. A. Strominger, A simple proof of the chiral gravity conjecture, arXiv:0808.0506 [ inSPIRE].

  12. D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [ inSPIRE].

    ADS  Article  Google Scholar 

  13. D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys. D 17 (2009) 2367 [arXiv:0808.2575] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [ inSPIRE].

    ADS  Article  Google Scholar 

  15. K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the topologically massive gravity/CFT correspondence, arXiv:0909.5617 [ inSPIRE].

  16. D. Grumiller and I. Sachs, AdS 3 /LCFT 2 → correlators in cosmological topologically massive gravity, JHEP 03 (2010) 012 [arXiv:0910.5241] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  17. A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and extremal CFT , Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  19. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  20. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, arXiv:1107.0290 [ inSPIRE].

  21. J. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [ inSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  22. M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. J.R. David, M.R. Gaberdiel and R. Gopakumar, The heat kernel on AdS 3 and its applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  24. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [ inSPIRE].

    ADS  Google Scholar 

  25. M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  26. C. Ahn, The large-N ’t Hooft limit of coset minimal models, arXiv:1106.0351 [ inSPIRE].

  27. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  28. M.R. Gaberdiel and C. Vollenweider, Minimal model holography for SO(2N), arXiv:1106.2634 [ inSPIRE].

  29. C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, arXiv:1106.2580 [ inSPIRE].

  30. B. Chen, J. Long and J.-b. Wu, Spin-3 topological massive gravity, arXiv:1106.5141 [ inSPIRE].

  31. T. Damour and S. Deser, ‘Geometry’ of spin 3 gauge theories, Annales Poincaré Phys. Theor. 47 (1987) 277 [ inSPIRE].

    MathSciNet  MATH  Google Scholar 

  32. E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [ inSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  33. C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [ inSPIRE].

    ADS  Google Scholar 

  34. C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space elementary particles in a curved space. 7., Phys. Rev. D 20 (1979) 848 [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  36. S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev. D 74 (2006) 024015 [hep-th/0509148] [ inSPIRE].

    ADS  Google Scholar 

  37. K. Hotta, Y. Hyakutake, T. Kubota and H. Tanida, Brown-Henneaux’s canonical approach to topologically massive gravity, JHEP 07 (2008) 066 [arXiv:0805.2005] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  38. G.M.T. Watts, W-algebras and their representations, in Proceedings of the Eötvös Summer School in Physics: Conformal Field Theories and Integrable Models, Budapest Hungary, 13–18 Aug. 1996, http://www.mth.kcl.ac.uk/~gmtw/97-50.ps.

  39. J. Rasmussen, W-extended Kac representations and integrable boundary conditions in the logarithmic minimal models WLM(1,p), J. Phys. A 44 (2011) 395205 [arXiv:1106.4893] [ inSPIRE].

    MathSciNet  Google Scholar 

  40. M.R. Gaberdiel, D. Grumiller and D. Vassilevich, Graviton 1-loop partition function for 3-dimensional massive gravity, JHEP 11 (2010) 094 [arXiv:1007.5189] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  41. M. Bertin, D. Grumiller, D. Vassilevich and T. Zojer, Generalised massive gravity one-loop partition function and AdS/(L)CFT, JHEP 06 (2011) 111 [arXiv:1103.5468] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  42. A. Bagchi, S. Lal, A. Saha and B. Sahoo, One loop partition function for topologically massive higher spin gravity, arXiv:1107.2063 [ inSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bindusar Sahoo.

Additional information

ArXiv ePrint: 1107.0915

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bagchi, A., Lal, S., Saha, A. et al. Topologically massive higher spin gravity. J. High Energ. Phys. 2011, 150 (2011). https://doi.org/10.1007/JHEP10(2011)150

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)150

Keywords

  • Gauge-gravity correspondence
  • AdS-CFT Correspondence
  • Conformal and W Symmetry