S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys.
140 (1982) 372 [Erratum ibid.
185 (1988) 406] [Annals Phys.
281 (2000) 409] [
inSPIRE].
S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett.
48 (1982) 975 [
inSPIRE].
ADS
Article
Google Scholar
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.
2 (1998) 231 [Int. J. Theor. Phys.
38 (1999) 1133] [hep-th/9711200] [
inSPIRE].
MathSciNet
Article
Google Scholar
M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.
69 (1992) 1849 [hep-th/9204099] [
inSPIRE].
MathSciNet
ADS
MATH
Article
Google Scholar
W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP
04 (2008) 082 [arXiv:0801.4566] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
S. Carlip, S. Deser, A. Waldron and D. Wise, Cosmological topologically massive gravitons and photons, Class. Quant. Grav.
26 (2009) 075008 [arXiv:0803.3998] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
W. Li, W. Song and A. Strominger, Comment on ‘Cosmological topological massive gravitons and photons’, arXiv:0805.3101 [
inSPIRE].
D. Grumiller, R. Jackiw and N. Johansson, Canonical analysis of cosmological topologically massive gravity at the chiral point, arXiv:0806.4185 [
inSPIRE].
S. Carlip, S. Deser, A. Waldron and D. Wise, Topologically massive AdS gravity, Phys. Lett.
B 666 (2008) 272 [arXiv:0807.0486] [
inSPIRE].
MathSciNet
ADS
Google Scholar
G. Giribet, M. Kleban and M. Porrati, Topologically massive gravity at the chiral point is not chiral, JHEP
10 (2008) 045 [arXiv:0807.4703] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
A. Strominger, A simple proof of the chiral gravity conjecture, arXiv:0808.0506 [
inSPIRE].
D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP
07 (2008) 134 [arXiv:0805.2610] [
inSPIRE].
ADS
Article
Google Scholar
D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys.
D 17 (2009) 2367 [arXiv:0808.2575] [
inSPIRE].
MathSciNet
ADS
Google Scholar
K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP
09 (2009) 045 [arXiv:0906.4926] [
inSPIRE].
ADS
Article
Google Scholar
K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the topologically massive gravity/CFT correspondence, arXiv:0909.5617 [
inSPIRE].
D. Grumiller and I. Sachs, AdS
3
/LCFT
2 → correlators in cosmological topologically massive gravity, JHEP
03 (2010) 012 [arXiv:0910.5241] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and extremal CFT , Phys. Rev.
D 81 (2010) 064007 [arXiv:0903.4573] [
inSPIRE].
MathSciNet
ADS
Google Scholar
M. Henneaux and S.-J. Rey, Nonlinear W
∞
as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP
12 (2010) 007 [arXiv:1008.4579] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP
11 (2010) 007 [arXiv:1008.4744] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, arXiv:1107.0290 [
inSPIRE].
J. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.
104 (1986) 207 [
inSPIRE].
MathSciNet
ADS
MATH
Article
Google Scholar
M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS
3, JHEP
02 (2011) 004 [arXiv:1009.6087] [
inSPIRE].
MathSciNet
ADS
Google Scholar
J.R. David, M.R. Gaberdiel and R. Gopakumar, The heat kernel on AdS
3
and its applications, JHEP
04 (2010) 125 [arXiv:0911.5085] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
M.R. Gaberdiel and R. Gopakumar, An AdS
3
dual for minimal model CFTs, Phys. Rev.
D 83 (2011) 066007 [arXiv:1011.2986] [
inSPIRE].
ADS
Google Scholar
M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP
05 (2011) 031 [arXiv:1101.2910] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
C. Ahn, The large-N ’t Hooft limit of coset minimal models, arXiv:1106.0351 [
inSPIRE].
M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP
08 (2011) 077 [arXiv:1106.1897] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
M.R. Gaberdiel and C. Vollenweider, Minimal model holography for SO(2N), arXiv:1106.2634 [
inSPIRE].
C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS
3
and its CFT dual, arXiv:1106.2580 [
inSPIRE].
B. Chen, J. Long and J.-b. Wu, Spin-3 topological massive gravity, arXiv:1106.5141 [
inSPIRE].
T. Damour and S. Deser, ‘Geometry’ of spin 3 gauge theories, Annales Poincaré Phys. Theor.
47 (1987) 277 [
inSPIRE].
MathSciNet
MATH
Google Scholar
E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys.
325 (2010) 1118 [arXiv:0911.3061] [
inSPIRE].
MathSciNet
ADS
MATH
Article
Google Scholar
C. Fronsdal, Massless fields with integer spin, Phys. Rev.
D 18 (1978) 3624 [
inSPIRE].
ADS
Google Scholar
C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space elementary particles in a curved space. 7., Phys. Rev. D 20 (1979) 848 [
inSPIRE].
MathSciNet
ADS
Google Scholar
P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP
01 (2006) 022 [hep-th/0508218] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev.
D 74 (2006) 024015 [hep-th/0509148] [
inSPIRE].
ADS
Google Scholar
K. Hotta, Y. Hyakutake, T. Kubota and H. Tanida, Brown-Henneaux’s canonical approach to topologically massive gravity, JHEP
07 (2008) 066 [arXiv:0805.2005] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
G.M.T. Watts, W-algebras and their representations, in Proceedings of the Eötvös Summer School in Physics: Conformal Field Theories and Integrable Models, Budapest Hungary, 13–18 Aug. 1996, http://www.mth.kcl.ac.uk/~gmtw/97-50.ps.
J. Rasmussen, W-extended Kac representations and integrable boundary conditions in the logarithmic minimal models WLM(1,p), J. Phys.
A 44 (2011) 395205 [arXiv:1106.4893] [
inSPIRE].
MathSciNet
Google Scholar
M.R. Gaberdiel, D. Grumiller and D. Vassilevich, Graviton 1-loop partition function for 3-dimensional massive gravity, JHEP
11 (2010) 094 [arXiv:1007.5189] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
M. Bertin, D. Grumiller, D. Vassilevich and T. Zojer, Generalised massive gravity one-loop partition function and AdS/(L)CFT, JHEP
06 (2011) 111 [arXiv:1103.5468] [
inSPIRE].
MathSciNet
ADS
Article
Google Scholar
A. Bagchi, S. Lal, A. Saha and B. Sahoo, One loop partition function for topologically massive higher spin gravity, arXiv:1107.2063 [
inSPIRE].