Skip to main content

Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions

Abstract

We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3 or T 4-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are likely to be present on K3 or T 4-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and briefly discuss some of their astrophysical, cosmological and phenomenological implications.

References

  1. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [ INSPIRE].

    ADS  Google Scholar 

  2. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [ INSPIRE].

    ADS  Google Scholar 

  3. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [ INSPIRE].

    ADS  Google Scholar 

  4. I. Antoniadis, S. Dimopoulos and G. Dvali, Millimeter range forces in superstring theories with weak scale compactification, Nucl. Phys. B 516 (1998) 70 [hep-ph/9710204] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  5. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  8. M. Cicoli, J.P. Conlon and F. Quevedo, General analysis of large volume scenarios with string loop moduli stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  9. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [ INSPIRE].

    ADS  Article  Google Scholar 

  10. J. Cascales, M. Garciadel Moral, F. Quevedo and A. Uranga, Realistic D-brane models on warped throats: fluxes, hierarchies and moduli stabilization, JHEP 02 (2004) 031 [hep-th/0312051] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. Y. Aghababaie et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  13. J. Vinet and J.M. Cline, Codimension-two branes in six-dimensional supergravity and the cosmological constant problem, Phys. Rev. D 71 (2005) 064011 [hep-th/0501098] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. C. Burgess, J. Matias and F. Quevedo, MSLED: a Minimal Supersymmetric Large Extra Dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  15. D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [ INSPIRE].

    ADS  Google Scholar 

  16. I. Antoniadis and K. Benakli, Large dimensions and string physics in future colliders, Int. J. Mod. Phys. A 15 (2000) 4237 [hep-ph/0007226] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. I. Antoniadis, String and D-brane physics at low-energy, hep-th/0102202 [ INSPIRE].

  18. J.L. Hewett and D. Sadri, Supersymmetric extra dimensions: gravitino effects in selectron pair production, Phys. Rev. D 69 (2004) 015001 [hep-ph/0204063] [ INSPIRE].

    ADS  Google Scholar 

  19. S. Baek, S.C. Park and J.-h. Song, Kaluza-Klein gravitino production with a single photon at e + e colliders, Phys. Rev. D 66 (2002) 056004 [hep-ph/0206008] [ INSPIRE].

    ADS  Google Scholar 

  20. M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [ INSPIRE].

    ADS  Article  Google Scholar 

  21. M. Williams, C. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range, arXiv:1103.4556 [ INSPIRE].

  22. ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7 \) TeV in final states with missing transverse momentum and b-jets, arXiv:1103.4344 [ INSPIRE].

  23. ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [ INSPIRE].

    ADS  Article  Google Scholar 

  24. CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [ INSPIRE].

    ADS  Google Scholar 

  25. R. Blumenhagen and M. Schmidt-Sommerfeld, Power towers of string instantons for N = 1 vacua, JHEP 07 (2008) 027 [arXiv:0803.1562] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  26. C. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [ INSPIRE].

    ADS  Article  Google Scholar 

  27. C. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [ INSPIRE].

    ADS  Article  Google Scholar 

  28. C. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [ INSPIRE].

    MathSciNet  Article  Google Scholar 

  29. C. Burgess, Supersymmetric large extra dimensions, hep-ph/0406214 [ INSPIRE].

  30. C. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [ INSPIRE].

    ADS  Article  Google Scholar 

  31. C. Burgess, Supersymmetric large extra dimensions and the cosmological constant problem, hep-th/0510123 [ INSPIRE].

  32. M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, arXiv:1107.0383 [ INSPIRE].

  33. K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Int. J. Math. 4 (1993) 439.

    MathSciNet  MATH  Article  Google Scholar 

  34. M.B. Schulz, Calabi-Yau duals of torus orientifolds, JHEP 05 (2006) 023 [hep-th/0412270] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  35. D. Gallego, On the effective description of large volume compactifications, JHEP 06 (2011) 087 [arXiv:1103.5469] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  36. T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  37. M.T. Grisaru, W. Siegel and M. Roček, Improved methods for supergraphs, Nucl. Phys. B 159 (1979) 429 [ INSPIRE].

    ADS  Article  Google Scholar 

  38. E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79 [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  39. M. Dine and N. Seiberg, Nonrenormalization theorems in superstring theory, Phys. Rev. Lett. 57 (1986) 2625 [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  40. N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. C. Burgess, C. Escoda and F. Quevedo, Nonrenormalization of flux superpotentials in string theory, JHEP 06 (2006) 044 [hep-th/0510213] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  42. K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′ corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  43. M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  44. M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  45. M. Cicoli, C. Burgess and F. Quevedo, Fibre inflation: observable gravity waves from IIB string compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [ INSPIRE].

    ADS  Article  Google Scholar 

  46. M. Cicoli, String loop moduli stabilisation and cosmology in IIB flux compactifications, Fortsch. Phys. 58 (2010) 115 [arXiv:0907.0665] [ INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  47. M. Cicoli and F. Quevedo, String moduli inflation: an overview, Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  48. R. Blumenhagen, M. Cvetič, . Richter, Robert and T. Weigand, Lifting D-instanton zero modes by recombination and background fluxes, JHEP 10 (2007) 098 [arXiv:0708.0403] [ INSPIRE].

    ADS  Article  Google Scholar 

  49. M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, arXiv:1107.3732 [ INSPIRE].

  50. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [ INSPIRE].

    ADS  Google Scholar 

  51. N. Kaloper, J. March-Russell, G.D. Starkman and M. Trodden, Compact hyperbolic extra dimensions: branes, Kaluza-Klein modes and cosmology, Phys. Rev. Lett. 85 (2000) 928 [hep-ph/0002001] [ INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  52. A. Kehagias and J. Russo, Hyperbolic spaces in string and M-theory, JHEP 07 (2000) 027 [hep-th/0003281] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  53. R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUT s in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  54. C. Burgess, A. Maharana and F. Quevedo, Uber-naturalness: unexpectedly light scalars from supersymmetric extra dimensions, JHEP 05 (2011) 010 [arXiv:1005.1199] [ INSPIRE].

    ADS  Article  Google Scholar 

  55. D. Hoover and C. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [ INSPIRE].

    ADS  Article  Google Scholar 

  56. C. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [ INSPIRE].

    ADS  Article  Google Scholar 

  57. R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  58. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  59. J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  60. T.W. Grimm, S. Krause and T. Weigand, F-theory GUT vacua on compact Calabi-Yau fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  61. ATLAS collaboration, G. Aad et al., Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Lett. B 701 (2011) 50 [arXiv:1103.1391] [ INSPIRE].

    ADS  Google Scholar 

  62. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [ INSPIRE].

    ADS  Google Scholar 

  63. J.P. Conlon, A. Maharana and F. Quevedo, Towards realistic string vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  64. R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  65. L. Anguelova, V. Calo and M. Cicoli, Large volume string compactifications at finite temperature, JCAP 10 (2009) 025 [arXiv:0904.0051] [ INSPIRE].

    ADS  Article  Google Scholar 

  66. G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [ INSPIRE].

    ADS  Google Scholar 

  67. T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [ INSPIRE].

    ADS  Google Scholar 

  68. B. de Carlos, J. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [ INSPIRE].

    ADS  Google Scholar 

  69. J.P. Conlon, R. Kallosh, A.D. Linde and F. Quevedo, Volume modulus inflation and the gravitino mass problem, JCAP 09 (2008) 011 [arXiv:0806.0809] [ INSPIRE].

    ADS  Article  Google Scholar 

  70. R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: baryon-dark matter coincidence from branchings in moduli decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [ INSPIRE].

    ADS  Google Scholar 

  71. M. Cicoli and A. Mazumdar, Reheating for closed string inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [ INSPIRE].

    ADS  Article  Google Scholar 

  72. M. Cicoli and A. Mazumdar, Inflation in string theory: a graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [ INSPIRE].

    ADS  Google Scholar 

  73. J.P. Conlon and F.G. Pedro, Moduli redefinitions and moduli stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  74. K. Choi, H.P. Nilles, C.S. Shin and M. Trapletti, Sparticle spectrum of large volume compactification, JHEP 02 (2011) 047 [arXiv:1011.0999] [ INSPIRE].

    ADS  Article  Google Scholar 

  75. V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  76. V. Kaplunovsky and J. Louis, On gauge couplings in string theory, Nucl. Phys. B 444 (1995) 191 [hep-th/9502077] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  77. J.P. Conlon, Gauge threshold corrections for local string models, JHEP 04 (2009) 059 [arXiv:0901.4350] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  78. J.P. Conlon and E. Palti, Gauge threshold corrections for local orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  79. C. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev. D 48 (1993) 4337 [hep-ph/9203216] [ INSPIRE].

    ADS  Google Scholar 

  80. C. Burgess and D. London, On anomalous gauge boson couplings and loop calculations, Phys. Rev. Lett. 69 (1992) 3428 [ INSPIRE].

    ADS  Article  Google Scholar 

  81. N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett. B 480 (2000) 193 [hep-th/0001197] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. S. Kachru, M.B. Schulz and E. Silverstein, Selftuning flat domain walls in 5D gravity and string theory, Phys. Rev. D 62 (2000) 045021 [hep-th/0001206] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  83. J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  84. D. Hoover and C. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [ INSPIRE].

    ADS  Article  Google Scholar 

  85. C. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [ INSPIRE].

    ADS  Article  Google Scholar 

  86. C. Burgess, D. Hoover and G. Tasinato, Technical naturalness on a codimension-2 brane, JHEP 06 (2009) 014 [arXiv:0903.0402] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  87. A. Bayntun, C. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [ INSPIRE].

    ADS  Article  Google Scholar 

  88. M. Peloso, L. Sorbo and G. Tasinato, Standard 4D gravity on a brane in six dimensional flux compactifications, Phys. Rev. D 73 (2006) 104025 [hep-th/0603026] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  89. C. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [ INSPIRE].

    ADS  Article  Google Scholar 

  90. C. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [ INSPIRE].

    ADS  Article  Google Scholar 

  91. G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  92. S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  93. C. Burgess et al., Warped supersymmetry breaking, JHEP 04 (2008) 053 [hep-th/0610255] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  94. C. Burgess et al., Non-standard primordial fluctuations and nonGaussianity in string inflation, JHEP 08 (2010) 045 [arXiv:1005.4840] [ INSPIRE].

    ADS  Article  Google Scholar 

  95. E. Accomando, I. Antoniadis and K. Benakli, Looking for TeV scale strings and extra dimensions, Nucl. Phys. B 579 (2000) 3 [hep-ph/9912287] [ INSPIRE].

    ADS  Article  Google Scholar 

  96. S. Cullen, M. Perelstein and M.E. Peskin, TeV strings and collider probes of large extra dimensions, Phys. Rev. D 62 (2000) 055012 [hep-ph/0001166] [ INSPIRE].

    ADS  Google Scholar 

  97. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [ INSPIRE].

    ADS  Article  Google Scholar 

  98. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  99. J.L. Hewett, Indirect collider signals for extra dimensions, Phys. Rev. Lett. 82 (1999) 4765 [hep-ph/9811356] [ INSPIRE].

    ADS  Article  Google Scholar 

  100. G.F. Giudice and A. Strumia, Constraints on extra dimensional theories from virtual graviton exchange, Nucl. Phys. B 663 (2003) 377 [hep-ph/0301232] [ INSPIRE].

    ADS  Article  Google Scholar 

  101. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett. B 197 (1987) 81 [ INSPIRE].

    ADS  Google Scholar 

  102. D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [ INSPIRE].

    ADS  Google Scholar 

  103. D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [ INSPIRE].

    ADS  Google Scholar 

  104. I. Muzinich and M. Soldate, High-energy unitarity of gravitation and strings, Phys. Rev. D 37 (1988) 359 [ INSPIRE].

    ADS  Google Scholar 

  105. H.L. Verlinde and E.P. Verlinde, Scattering at planckian energies, Nucl. Phys. B 371 (1992) 246 [hep-th/9110017] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  106. D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B 388 (1992) 570 [hep-th/9203082] [ INSPIRE].

    ADS  Article  Google Scholar 

  107. S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [ INSPIRE].

    ADS  Google Scholar 

  108. S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, Phys. Rev. D 82 (2010) 104022 [arXiv:1005.5408] [ INSPIRE].

    ADS  Google Scholar 

  109. F. Leblond, Geometry of large extra dimensions versus graviton emission, Phys. Rev. D 64 (2001) 045016 [hep-ph/0104273] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  110. CDF collaboration, A. Abulencia et al., Search for large extra dimensions in the production of jets and missing transverse energy in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 97 (2006) 171802 [hep-ex/0605101] [ INSPIRE].

    ADS  Article  Google Scholar 

  111. G. Azuelos, P. Beauchemin and C. Burgess, Phenomenological constraints on extra dimensional scalars, J. Phys. G 31 (2005) 1 [hep-ph/0401125] [ INSPIRE].

    ADS  Google Scholar 

  112. P. Beauchemin, G. Azuelos and C. Burgess, Dimensionless coupling of bulk scalars at the LHC, J. Phys. G 30 (2004) N17 [hep-ph/0407196] [ INSPIRE].

    Google Scholar 

  113. CMS collaboration, S. Chatrchyan et al., Search for large extra dimensions in the diphoton final state at the Large Hadron Collider, JHEP 05 (2011) 085 [arXiv:1103.4279] [ INSPIRE].

    ADS  Article  Google Scholar 

  114. ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7 \) TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [ INSPIRE].

    ADS  Article  Google Scholar 

  115. R. Franceschini, P.P. Giardino, G.F. Giudice, P. Lodone and A. Strumia, LHC bounds on large extra dimensions, JHEP 05 (2011) 092 [arXiv:1101.4919] [ INSPIRE].

    ADS  Article  Google Scholar 

  116. S. Cullen and M. Perelstein, SN 1987A constraints on large compact dimensions, Phys. Rev. Lett. 83 (1999) 268 [hep-ph/9903422] [ INSPIRE].

    ADS  Article  Google Scholar 

  117. V.D. Barger, T. Han, C. Kao and R.-J. Zhang, Astrophysical constraints on large extra dimensions, Phys. Lett. B 461 (1999) 34 [hep-ph/9905474] [ INSPIRE].

    ADS  Google Scholar 

  118. C. Hanhart, D.R. Phillips, S. Reddy and M.J. Savage, Extra dimensions, SN 1987A, and nucleon-nucleon scattering data, Nucl. Phys. B 595 (2001) 335 [nucl-th/0007016] [ INSPIRE].

    ADS  Article  Google Scholar 

  119. S. Hannestad and G.G. Raffelt, Stringent neutron star limits on large extra dimensions, Phys. Rev. Lett. 88 (2002) 071301 [hep-ph/0110067] [ INSPIRE].

    ADS  Article  Google Scholar 

  120. S. Hannestad and G. Raffelt, New supernova limit on large extra dimensions, Phys. Rev. Lett. 87 (2001) 051301 [hep-ph/0103201] [ INSPIRE].

    ADS  Article  Google Scholar 

  121. C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 4 (2001) 4 [gr-qc/0103036] [ INSPIRE].

    MathSciNet  Google Scholar 

  122. C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9 (2005) 3 [gr-qc/0510072] [ INSPIRE].

    Google Scholar 

  123. E. Adelberger, J. Gundlach, B. Heckel, S. Hoedl and S. Schlamminger, Torsion balance experiments: a low-energy frontier of particle physics, Prog. Part. Nucl. Phys. 62 (2009) 102 [ INSPIRE].

    ADS  Article  Google Scholar 

  124. E. Adelberger, B.R. Heckel and A. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [ INSPIRE].

    ADS  Article  Google Scholar 

  125. C. Hoyle et al., Sub-millimeter tests of the gravitational inverse-square law, Phys. Rev. D 70 (2004) 042004 [hep-ph/0405262] [ INSPIRE].

    ADS  Google Scholar 

  126. P. Callin and C. Burgess, Deviations from Newton’s law in supersymmetric large extra dimensions, Nucl. Phys. B 752 (2006) 60 [hep-ph/0511216] [ INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  127. A. Albrecht, C. Burgess, F. Ravndal and C. Skordis, Natural quintessence and large extra dimensions, Phys. Rev. D 65 (2002) 123507 [astro-ph/0107573] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  128. D.J. Marsh and P.G. Ferreira, Ultra-light scalar fields and the growth of structure in the universe, Phys. Rev. D 82 (2010) 103528 [arXiv:1009.3501] [ INSPIRE].

    ADS  Google Scholar 

  129. D.J. Marsh, The axiverse extended: vacuum destabilisation, early dark energy and cosmological collapse, Phys. Rev. D 83 (2011) 123526 [arXiv:1102.4851] [ INSPIRE].

    ADS  Google Scholar 

  130. D. Lüst, S. Stieberger and T.R. Taylor, The LHC string hunter’s companion, Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333] [ INSPIRE].

    ADS  Article  Google Scholar 

  131. D. Lüst, O. Schlotterer, S. Stieberger and T. Taylor, The LHC string hunter’s companion (II): five-particle amplitudes and universal properties, Nucl. Phys. B 828 (2010) 139 [arXiv:0908.0409] [ INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cicoli.

Additional information

ArXiv ePrint: 1105.2107

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Cicoli, M., Burgess, C.P. & Quevedo, F. Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions. J. High Energ. Phys. 2011, 119 (2011). https://doi.org/10.1007/JHEP10(2011)119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)119

Keywords

  • Strings and branes phenomenology
  • Phenomenology of Large extra dimensions