Skip to main content

Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

Abstract

This paper constructs the reduction of heterotic M-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a ‘twist’ in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [ inSPIRE].

    ADS  Google Scholar 

  2. [2]

    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [ inSPIRE].

    ADS  Google Scholar 

  3. [3]

    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  4. [4]

    T. Banks and M. Dine, Couplings and scales in strongly coupled heterotic string theory, Nucl. Phys. B 479 (1996) 173 [hep-th/9605136] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  5. [5]

    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The Particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  6. [6]

    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Moduli dependent spectra of heterotic compactifications, Phys. Lett. B 598 (2004) 279 [hep-th/0403291] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. [7]

    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa Couplings in Heterotic Compactification, Commun. Math. Phys. 297 (2010) 95 [arXiv:0904.2186] [ inSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  8. [8]

    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  9. [9]

    G. Curio, A. Krause and D. Lüst, Moduli stabilization in the heterotic/IIB discretuum, Fortsch. Phys. 54 (2006) 225 [hep-th/0502168] [ inSPIRE].

    ADS  MATH  Article  Google Scholar 

  10. [10]

    V. Braun and B.A. Ovrut, Stabilizing moduli with a positive cosmological constant in heterotic M-theory, JHEP 07 (2006) 035 [hep-th/0603088] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. [11]

    N. Ahmed and I.G. Moss, Balancing the vacuum energy in heterotic M-theory, Nucl. Phys. B 833 (2010) 133 [arXiv:0907.1602] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. [12]

    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [ inSPIRE].

    ADS  Google Scholar 

  13. [13]

    E.R. Sharpe, Boundary superpotentials, Nucl. Phys. B 523 (1998) 211 [hep-th/9611196] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  14. [14]

    E.A. Mirabelli and M.E. Peskin, Transmission of supersymmetry breaking from a four-dimensional boundary, Phys. Rev. D 58 (1998) 065002 [hep-th/9712214] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. [15]

    A. Lukas, B.A. Ovrut, K. Stelle and D. Waldram, Heterotic M-theory in five-dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    A. Lukas, B.A. Ovrut, K. Stelle and D. Waldram, The Universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. [17]

    I.G. Moss, Boundary terms for eleven-dimensional supergravity and M-theory, Phys. Lett. B 577 (2003) 71 [hep-th/0308159] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. [18]

    I.G. Moss, Boundary terms for supergravity and heterotic M-theory, Nucl. Phys. B 729 (2005) 179 [hep-th/0403106] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  19. [19]

    I.G. Moss, A New look at anomaly cancellation in heterotic M-theory, Phys. Lett. B 637 (2006) 93 [hep-th/0508227] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. [20]

    P. Hořava, Gluino condensation in strongly coupled heterotic string theory, Phys. Rev. D 54 (1996) 7561 [hep-th/9608019] [ inSPIRE].

    ADS  Google Scholar 

  21. [21]

    N. Ahmed and I.G. Moss, Gaugino condensation in an improved heterotic M-theory, JHEP 12 (2008) 108 [arXiv:0809.2244] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  22. [22]

    D.V. Belyaev and P. van Nieuwenhuizen, Tensor calculus for supergravity on a manifold with boundary, JHEP 02 (2008) 047 [arXiv:0711.2272] [ inSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    D.V. Belyaev, Boundary conditions in supergravity on a manifold with boundary, JHEP 01 (2006) 047 [hep-th/0509172] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  24. [24]

    T. Pugh, E. Sezgin and K. Stelle, D =7/ D=6 Heterotic Supergravity with Gauged R-Symmetry, JHEP 02 (2011) 115 [arXiv:1008.0726] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  25. [25]

    M. Fabinger and P. Hořava, Casimir effect between world branes in heterotic M-theory, Nucl. Phys. B 580 (2000) 243 [hep-th/0002073] [ inSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry, Cambridge University Press, Cambridge U.K. (2002).

    Google Scholar 

  27. [27]

    H.C. Luckock and I.G. Moss, The quantum theory of random surfaces and spinning branes, Class. Quant. Grav. 6 (1989) 1993.

    MathSciNet  ADS  Article  Google Scholar 

  28. [28]

    I.G. Moss, Higher order terms in an improved heterotic M-theory, JHEP 11 (2008) 067 [arXiv:0810.1662] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  29. [29]

    I.G. Moss and P.J. Silva, BRST invariant boundary conditions for gauge theories, Phys. Rev. D 55 (1997) 1072 [gr-qc/9610023] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. [30]

    I.G. Moss and S.J. Poletti, Conformal anomalies on Einstein spaces with boundary, Phys. Lett. B 333 (1994) 326 [gr-qc/9405044] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. [31]

    I.G. Moss and J.P. Norman, One loop effective potential in heterotic M-theory, JHEP 09 (2004) 020 [hep-th/0401181] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  32. [32]

    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455.

    ADS  Article  Google Scholar 

  33. [33]

    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 2: Loop amplitudes, anomalies and phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ian G. Moss.

Additional information

ArXiv ePrint: 1108.5456

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moss, I.G., Omotani, J.T. & Saffin, P.M. Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary. J. High Energ. Phys. 2011, 88 (2011). https://doi.org/10.1007/JHEP10(2011)088

Download citation

Keywords

  • Supergravity Models
  • M-Theory