Skip to main content
Log in

AMEND: A Model Explaining Neutrino masses and Dark matter testable at the LHC and MEG

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Despite being very successful in explaining the wide range of precision experimental results obtained so far, the Standard Model (SM) of elementary particles fails to address two of the greatest observations of the recent decades: tiny but nonzero neutrino masses and the well-known problem of missing mass in the Universe. Typically the new models beyond the SM explain only one of these observations. Instead, in the present article, we take the view that they both point towards the same new extension of the Standard Model. The new particles introduced are responsible simultaneously for neutrino masses and for the dark matter of the Universe. The stability of dark matter and the smallness of neutrino masses are guaranteed by a U(1) global symmetry, broken to a remnant \( {\mathbb{Z}_2} \). The canonical seesaw mechanism is forbidden and neutrino masses emerge at the loop level being further suppressed by the small explicit breaking of the U(1) symmetry. The new particles and interactions are invoked at the electroweak scale and lead to rich phenomenology in colliders, in lepton flavour violating rare decays and in direct and indirect dark matter searches, making the model testable in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [SPIRES].

    ADS  Google Scholar 

  2. K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter model, Phys. Rev. D 69 (2004) 113009 [hep-ph/0403003] [SPIRES].

    ADS  Google Scholar 

  3. T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [SPIRES].

    ADS  Google Scholar 

  4. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].

    ADS  Google Scholar 

  5. J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μ → eγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [SPIRES].

    ADS  Google Scholar 

  6. E.J. Chun and H.B. Kim, Axino light dark matter and neutrino masses with R-parity violation, JHEP 10 (2006) 082 [hep-ph/0607076] [SPIRES].

    Article  ADS  Google Scholar 

  7. T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [SPIRES].

    ADS  Google Scholar 

  8. J. Kubo and D. Suematsu, Neutrino masses and CDM in a non-supersymmetric model, Phys. Lett. B 643 (2006) 336 [hep-ph/0610006] [SPIRES].

    ADS  Google Scholar 

  9. M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV -scale physics without fine-tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [SPIRES].

    Article  ADS  Google Scholar 

  10. M. Aoki, S. Kanemura and O. Seto, A model of TeV scale physics for neutrino mass, dark matter and baryon asymmetry and its phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [SPIRES].

    ADS  Google Scholar 

  11. B. Bajc, T. Enkhbat, D.K. Ghosh, G. Senjanović and Y. Zhang, MSSM in view of PAMELA and Fermi-LAT, JHEP 05 (2010) 048 [arXiv:1002.3631] [SPIRES].

    Article  ADS  Google Scholar 

  12. C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz and S. Pascoli, Are small neutrino masses unveiling the missing mass problem of the universe?, Phys. Rev. D 77 (2008) 043516 [hep-ph/0612228] [SPIRES].

    ADS  Google Scholar 

  13. Y. Farzan, A minimal model linking two great mysteries: neutrino mass and dark matter, Phys. Rev. D 80 (2009) 073009 [arXiv:0908.3729] [SPIRES].

    ADS  Google Scholar 

  14. A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [SPIRES].

    ADS  Google Scholar 

  15. K.S. Babu, Model of ’calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].

    ADS  Google Scholar 

  16. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  17. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  18. The CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  19. R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [SPIRES].

    ADS  Google Scholar 

  20. CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a P-type point contact Germanium detector, arXiv:1002.4703 [SPIRES].

  21. XENON100 collaboration, E. Aprile et al., First dark matter results from the XENON 100 experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  22. C. McCabe, The astrophysical uncertainties of dark matter direct detection experiments, Phys. Rev. D 82 (2010) 023530 [arXiv:1005.0579] [SPIRES].

    ADS  Google Scholar 

  23. J.I. Collar and D.N. McKinsey, Comments on ’First dark matter results from the XENON 100 experiment’, arXiv:1005.0838 [SPIRES].

  24. XENON collaboration, Reply to the comments on the XENON 100 first dark matter results, arXiv:1005.2615 [SPIRES].

  25. J.I. Collar and D.N. McKinsey, Response to arXiv:1005:2615, arXiv:1005.3723 [SPIRES].

  26. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  27. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-α constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [SPIRES].

    ADS  Google Scholar 

  28. P.D. Serpico and G.G. Raffelt, MeV -mass dark matter and primordial nucleosynthesis, Phys. Rev. D 70 (2004) 043526 [astro-ph/0403417] [SPIRES].

    ADS  Google Scholar 

  29. G. ’t Hooft et. al., Recent developments in gauge theories (proceedings of the Nato Advanced Study Institute, August 26–September 8, Cargese, France (1979)), Plenum Press, New York U.S.A. (1980), pag. 438.

    Google Scholar 

  30. L. Lavoura, General formulae for f 1 →f 2 γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [SPIRES].

    Article  ADS  Google Scholar 

  31. MEG collaboration, J. Adam et al., A limit for the μ→eγ decay from the MEG experiment, Nucl. Phys. B 834 (2010) 1 [arXiv:0908.2594] [SPIRES].

    Article  ADS  Google Scholar 

  32. Super-B factory, http://www.pi.infn.it/SuperB/.

  33. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [SPIRES].

    ADS  Google Scholar 

  35. C.E. Yaguna, Large contributions to dark matter annihilation from three-body final states, Phys. Rev. D 81 (2010) 075024 [arXiv:1003.2730] [SPIRES].

    ADS  Google Scholar 

  36. L.L. Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [SPIRES].

    Article  Google Scholar 

  37. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  38. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  39. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].

    ADS  Google Scholar 

  40. R. Bernabei et al., Investigating the DAMA annual modulation data in the framework of inelastic dark matter, Eur. Phys. J. C 23 (2002) 61 [SPIRES].

    ADS  Google Scholar 

  41. D. Tucker-Smith and N. Weiner, Inelastic dark matter at DAMA, CDMS and future experiments, Nucl. Phys. Proc. Suppl. 124 (2003) 197 [astro-ph/0208403] [SPIRES].

    Article  ADS  Google Scholar 

  42. D. Tucker-Smith and N. Weiner, The status of inelastic dark matter, Phys. Rev. D 72 (2005) 063509 [hep-ph/0402065] [SPIRES].

    ADS  Google Scholar 

  43. S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D 79 (2009) 043513 [arXiv:0807.2250] [SPIRES].

    ADS  Google Scholar 

  44. J. March-Russell, C. McCabe and M. McCullough, Inelastic dark matter, non-standard halos and the DAMA/LIBRA results, JHEP 05 (2009) 071 [arXiv:0812.1931] [SPIRES].

    Article  ADS  Google Scholar 

  45. D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [SPIRES].

    ADS  Google Scholar 

  46. Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for Inelastic Dark Matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].

    Article  ADS  Google Scholar 

  47. R. Bernabei et al., Investigating electron interacting dark matter, Phys. Rev. D 77 (2008) 023506 [arXiv:0712.0562] [SPIRES].

    ADS  Google Scholar 

  48. J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [SPIRES].

    ADS  Google Scholar 

  49. XENON10 collaboration, J. Angle et al., Constraints on inelastic dark matter from XENON 10, Phys. Rev. D 80 (2009) 115005 [arXiv:0910.3698] [SPIRES].

    ADS  Google Scholar 

  50. XENON collaboration, J. Angle et al., First results from the XENON 10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].

    Article  ADS  Google Scholar 

  51. V.N. Lebedenko et al., Result from the first science run of the ZEPLIN-III dark matter search experiment, Phys. Rev. D 80 (2009) 052010 [arXiv:0812.1150] [SPIRES].

    ADS  Google Scholar 

  52. G. Angloher et al., Commissioning run of the CRESST-II dark matter search, arXiv:0809.1829 [SPIRES].

  53. KIMS collaboration, H.S. Lee et al., Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors, Phys. Rev. Lett. 99 (2007) 091301 [arXiv:0704.0423] [SPIRES].

    Article  ADS  Google Scholar 

  54. S. Archambault et al., Dark matter spin-dependent limits for WIMP interactions on 19-F by PICASSO, Phys. Lett. B 682 (2009) 185 [arXiv:0907.0307] [SPIRES].

    ADS  Google Scholar 

  55. J.Kopp,T.Schwetzand J.Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].

    ADS  Google Scholar 

  56. A.L. Fitzpatrick, D. Hooper and K.M. Zurek, Implications of CoGeNT and DAMA for light WIMP dark matter, Phys. Rev. D 81 (2010) 115005 [arXiv:1003.0014] [SPIRES].

    ADS  Google Scholar 

  57. S. Chang, J. Liu, A. Pierce, N. Weiner and I. Yavin, CoGeNT interpretations, JCAP 08 (2010) 018 [arXiv:1004.0697] [SPIRES].

    ADS  Google Scholar 

  58. F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [SPIRES].

    Article  ADS  Google Scholar 

  59. K. Schmidt-Hoberg and M.W. Winkler, Improved constraints on inelastic dark matter, JCAP 09 (2009) 010 [arXiv:0907.3940] [SPIRES].

    ADS  Google Scholar 

  60. S. Nussinov, L.-T. Wang and I. Yavin, Capture of inelastic dark matter in the Sun, JCAP 08 (2009) 037 [arXiv:0905.1333] [SPIRES].

    ADS  Google Scholar 

  61. D. Hooper, J.I. Collar, J. Hall and D. McKinsey, A consistent dark matter interpretation for CoGeNT and DAMA/LIBRA, arXiv:1007.1005 [SPIRES].

  62. P.W. Graham, R. Harnik, S. Rajendran and P. Saraswat, Exothermic dark matter, Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937] [SPIRES].

    ADS  Google Scholar 

  63. Xenon100, http://xenon.astro.columbia.edu/.

  64. R.M. Crocker, N.F. Bell, C. Balázs and D.I. Jones, Radio and gamma-ray constraints on dark matter annihilation in the galactic center, Phys. Rev. D 81 (2010) 063516 [arXiv:1002.0229] [SPIRES].

    ADS  Google Scholar 

  65. Q. Yuan, P.-F. Yin, X.-J. Bi, X.-M. Zhang and S.-H. Zhu, Gamma rays and neutrinos from dark matter annihilation in galaxy clusters, Phys. Rev. D 82 (2010) 023506 [arXiv:1002.0197] [SPIRES].

    ADS  Google Scholar 

  66. M. Ackermann et al., Constraints on dark matter annihilation in clusters of galaxies with the Fermi Large Area Telescope, JCAP 05 (2010) 025 [arXiv:1002.2239] [SPIRES].

    ADS  Google Scholar 

  67. K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic, Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum, arXiv:1002.3820 [SPIRES].

  68. Fermi-LAT collaboration, B. Lott, New insight into gamma-ray blazars from the Fermi-LAT, Int. J. Mod. Phys. D 19 (2010) 831 [SPIRES].

    ADS  Google Scholar 

  69. Y. Cui, J.D. Mason and L. Randall, General analysis of antideuteron searches for dark matter, arXiv:1006.0983 [SPIRES].

  70. O. Mena, S. Palomares-Ruiz and S. Pascoli, Reconstructing WIMP properties with neutrino detectors, Phys. Lett. B 664 (2008) 92 [arXiv:0706.3909] [SPIRES].

    ADS  Google Scholar 

  71. Icecube, http://icecube.wisc.edu/.

  72. D. Hooper, F. Petriello, K.M. Zurek and M. Kamionkowski, The new DAMA dark-matter window and energetic-neutrino searches, Phys. Rev. D 79 (2009) 015010 [arXiv:0808.2464] [SPIRES].

    ADS  Google Scholar 

  73. M. Cirelli et al., Spectra of neutrinos from dark matter annihilations, Nucl. Phys. B 727 (2005) 99 [hep-ph/0506298] [SPIRES].

    Article  ADS  Google Scholar 

  74. A.E. Erkoca, M.H. Reno and I. Sarcevic, Muon fluxes from dark matter annihilation, Phys. Rev. D 80 (2009) 043514 [arXiv:0906.4364] [SPIRES].

    ADS  Google Scholar 

  75. A. Menon, R. Morris, A. Pierce and N. Weiner, Capture and indirect detection of inelastic dark matter, Phys. Rev. D 82 (2010) 015011 [arXiv:0905.1847] [SPIRES].

    ADS  Google Scholar 

  76. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  77. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].

    Article  ADS  Google Scholar 

  78. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [SPIRES].

    ADS  Google Scholar 

  79. N. Maekawa, Electroweak symmetry breaking by vector-like fermions’ condensation with small S and T parameters, Phys. Rev. D 52 (1995) 1684 [SPIRES].

    ADS  Google Scholar 

  80. G. Cynolter and E. Lendvai, Electroweak precision constraints on vector-like fermions, Eur. Phys. J. C 58 (2008) 463 [arXiv:0804.4080] [SPIRES].

    Article  ADS  Google Scholar 

  81. M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B 661 (2008) 263 [hep-ph/0605193] [SPIRES].

    ADS  Google Scholar 

  82. Atlas detector, http://atlas.ch/.

  83. A. Esmaili and Y. Farzan, On the oscillation of neutrinos produced by the annihilation of dark matter inside the Sun, Phys. Rev. D 81 (2010) 113010 [arXiv:0912.4033] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Schmidt.

Additional information

ArXiv ePrint: 1005.5323

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farzan, Y., Pascoli, S. & Schmidt, M.A. AMEND: A Model Explaining Neutrino masses and Dark matter testable at the LHC and MEG. J. High Energ. Phys. 2010, 111 (2010). https://doi.org/10.1007/JHEP10(2010)111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)111

Keywords

Navigation