Skip to main content
Log in

The top window for dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate a scenario that the top quark is the only window to the dark matter particle. We use the effective Lagrangian approach to write down the interaction between the top quark and the dark matter particle. Requiring the dark matter satisfying the relic density we obtain the size of the effective interaction. We show that the scenario can be made consistent with the direct and indirect detection experiments by adjusting the size of the effective coupling. Finally, we calculate the production cross section for \( t\bar{t} + \chi \bar{\chi } \) at the Large Hadron Collider (LHC), which will give rise to an interesting signature of a top-pair plus large missing energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].

    Article  ADS  Google Scholar 

  3. C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Higgs in space!, JCAP 04 (2010) 004 [arXiv:0912.0004] [SPIRES].

    ADS  Google Scholar 

  4. M. Battaglia and G. Servant, Four-top production and \( t\bar{t} \) + missing energy events at multi-TeV e + e colliders, arXiv:1005.4632 [SPIRES].

  5. Q.H. Cao, C.R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, arXiv:0912.4511 [SPIRES].

  6. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, arXiv:1005.3797 [arXiv:1005.3797].

  7. J. Goodman et al., Constraints on light Majorana dark matter from colliders, arXiv:1005.1286 [SPIRES].

  8. J. Goodman et al., Constraints on dark matter from colliders, arXiv:1008.1783 [SPIRES].

  9. J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, arXiv:1008.1591 [SPIRES].

  10. The CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  11. XENON100 collaboration, E. Aprile et al., First dark matter results from the XENON 100 experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  12. P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [SPIRES].

    ADS  Google Scholar 

  13. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  14. O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].

    Article  ADS  Google Scholar 

  15. A.W. Strong et al., The GALPROP cosmic-ray propagation code, arXiv:0907.0559 [SPIRES].

  16. S. Albino, B.A. Kniehl and G. Kramer, Fragmentation functions for light charged hadrons with complete quark flavour separation, Nucl. Phys. B 725 (2005) 181 [hep-ph/ 0502188] [SPIRES].

    Article  ADS  Google Scholar 

  17. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].

    Article  ADS  Google Scholar 

  18. J. Alwall et al., MadGraph/ MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  19. D. E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  20. CMS collaboration, S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets, PoS(EPS-HEP 2009) 360.

  21. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, arXiv:1006.2833 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingman Cheung.

Additional information

ArXiv ePrint: 1009.0618

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, K., Mawatari, K., Senaha, E. et al. The top window for dark matter. J. High Energ. Phys. 2010, 81 (2010). https://doi.org/10.1007/JHEP10(2010)081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)081

Keywords

Navigation