Skip to main content
Log in

Axion-like-particle search with high-intensity lasers

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study ALP -photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV mass range and can thus complement ALP searches at dipole magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [SPIRES].

    Article  ADS  Google Scholar 

  2. CAST collaboration, E. Arik et al., Probing eV-scale axions with CAST, JCAP 02 (2009) 008 [arXiv:0810.4482] [SPIRES].

    ADS  Google Scholar 

  3. J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The Need for Purely Laboratory-Based Axion-Like Particle Searches, Phys. Rev. D 75 (2007) 013004 [hep-ph/0610203] [SPIRES].

    ADS  Google Scholar 

  4. L. Maiani, R. Petronzio and E. Zavattini, Effects Of Nearly Massless, Spin Zero Particles On Light Propagation In A Magnetic Field, Phys. Lett. B 175 (1986) 359 [SPIRES].

    ADS  Google Scholar 

  5. G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles, Phys. Rev. D 37 (1988) 1237 [SPIRES].

    ADS  Google Scholar 

  6. PVLAS collaboration, E. Zavattini et al., New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum, Phys. Rev. D 77 (2008) 032006 [arXiv:0706.3419] [SPIRES].

    ADS  Google Scholar 

  7. R. Battesti et al., The BMV experiment: a novel apparatus to study the propagati on of light in a transverse magnetic field, Eur. Phys. J. D 46 (2008) 323 [arXiv:0710.1703].

    ADS  Google Scholar 

  8. F. Bielsa et al., Status of the BMV experiment, arXiv:0911.4567 [SPIRES].

  9. E.I. Guendelman, I. Shilon, G. Cantatore and K. Zioutas, Photon Production From The Scattering of Axions Out of a Solenoidal Magnetic Field, JCAP 06 (2010) 031 [arXiv:0906.2537] [SPIRES].

    ADS  Google Scholar 

  10. B. Dobrich and H. Gies, Interferometry of light propagation in pulsed fields, Europhys. Lett. 87 (2009) 21002 [arXiv:0904.0216] [SPIRES].

    Article  ADS  Google Scholar 

  11. G. Zavattini and E. Calloni, Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas, Eur. Phys. J. C 62 (2009) 459 [arXiv:0812.0345] [SPIRES].

    Article  ADS  Google Scholar 

  12. P. Sikivie, Experimental tests of the “invisible” axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [SPIRES].

    Article  ADS  Google Scholar 

  13. A.A. Anselm, Arion <– –> Photon Oscillations In A Steady Magnetic Field. (in Russian), Yad. Fiz. 42 (1985) 1480 [SPIRES].

    Google Scholar 

  14. M. Gasperini, Axion Production By Electromagnetic Fields, Phys. Rev. Lett. 59 (1987) 396 [SPIRES].

    Article  ADS  Google Scholar 

  15. K. Van Bibber, N.R. Dagdeviren, S.E. Koonin, A. Kerman and H.N. Nelson, Proposed experiment to produce and detect light pseudoscalars, Phys. Rev. Lett. 59 (1987) 759 [SPIRES].

    Article  ADS  Google Scholar 

  16. K. Ehret et al., New ALPS Results on Hidden-Sector Lightweights, Phys. Lett. B 689 (2010) 149 [arXiv:1004.1313] [SPIRES].

    ADS  Google Scholar 

  17. ALPS collaboration, K. Ehret et al., Resonant laser power build-up in ALPS – a ’light-shining-through-walls’ experiment, Nucl. Instrum. Meth. A 612 (2009) 83 [arXiv:0905.4159] [SPIRES].

    ADS  Google Scholar 

  18. A.V. Afanasev, O.K. Baker and K.W. McFarlane, Production and detection of very light spin-zero bosons at optical frequencies, hep-ph/0605250 [SPIRES].

  19. A.V. Afanasev et al., New Experimental limit on Optical Photon Coupling to Neutra l, Scalar Bosons, Phys. Rev. Lett. 101 (2008) 120401 [arXiv:0806.2631] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. J.H. Steffen and A. Upadhye,The GammeV suite of experimental searches for axion-like particles, Mod. Phys. Lett. A 24 (2009) 2053 [arXiv:0908.1529] [SPIRES].

    ADS  Google Scholar 

  21. GammeV (T-969) collaboration, A.S. Chou et al., Search for axion-like particles using a variable baseline photon regeneration technique, Phys. Rev. Lett. 100 (2008) 080402 [arXiv:0710.3783] [SPIRES].

    Article  ADS  Google Scholar 

  22. C. Robilliard et al., No light shining through a wall, Phys. Rev. Lett. 99 (2007) 190403 [arXiv:0707.1296] [SPIRES].

    Article  ADS  Google Scholar 

  23. C. Robilliard et al., Search for photon oscillations into massive particles, Phys. Rev. D 78 (2008) 032013 [arXiv:0808.2800] [SPIRES].

    ADS  Google Scholar 

  24. OSQAR collaboration, P. Pugnat et al., First results from the OSQAR photon regeneration experiment: No light shining through a wall, Phys. Rev. D 78 (2008) 092003 [arXiv:0712.3362] [SPIRES].

    ADS  Google Scholar 

  25. H. Gies, D.F. Mota and D.J. Shaw, Hidden in the Light: Magnetically Induced Afterglow from Trapped Chameleon Fields, Phys. Rev. D 77 (2008) 025016 [arXiv:0710.1556] [SPIRES].

    ADS  Google Scholar 

  26. M. Ahlers, A. Lindner, A. Ringwald, L. Schrempp and C. Weniger, Alpenglow -A Signature for Chameleons in Axion-Like Particle Search Experiments, Phys. Rev. D 77 (2008) 015018 [arXiv:0710.1555] [SPIRES].

    ADS  Google Scholar 

  27. A. Upadhye, J.H. Steffen and A. Weltman, Constraining chameleon field theories using the GammeV afterglow experiments, Phys. Rev. D 81 (2010) 015013 [arXiv:0911.3906] [SPIRES].

    ADS  Google Scholar 

  28. M. Ahlers, H. Gies, J. Jaeckel, J. Redondo and A. Ringwald, Laser experiments explore the hidden sector, Phys. Rev. D 77 (2008) 095001 [arXiv:0711.4991] [SPIRES].

    ADS  Google Scholar 

  29. M. Ahlers, H. Gies, J. Jaeckel, J. Redondo and A. Ringwald, Light from the Hidden Sector, Phys. Rev. D 76 (2007) 115005 [arXiv:0706.2836] [SPIRES].

    ADS  Google Scholar 

  30. P. Sikivie, D.B. Tanner and K. van Bibber, Resonantly enhanced axion -photon regeneration, Phys. Rev. Lett. 98 (2007) 172002 [hep-ph/0701198] [SPIRES].

    Article  ADS  Google Scholar 

  31. H. Gies, Strong laser fields as a probe for fundamental physics, Eur. Phys. J. D 55 (2009) 311 [arXiv:0812.0668] [SPIRES].

    ADS  Google Scholar 

  32. H. Gies, External Fields as a Probe for Fundamental Physics, J. Phys. A 41 (2008) 164039 [arXiv:0711.1337] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56 (1985) 219.

    Article  ADS  Google Scholar 

  34. http://www.extreme-light-infrastructure.eu/.

  35. T. Heinzl and A. Ilderton, Exploring high-intensity QED at ELI, Eur. Phys. J. D 55 (2009) 359 [arXiv:0811.1960] [SPIRES].

    ADS  Google Scholar 

  36. M. Marklund and J. Lundin, Quantum Vacuum Experiments Using High Intensity Lasers, Eur. Phys. J. D 55 (2009) 319 [arXiv:0812.3087] [SPIRES].

    ADS  Google Scholar 

  37. W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038].

    Article  ADS  Google Scholar 

  38. V. Weisskopf, Uber die Elektrodynamik des Vakuums auf Grund der Quantenth eorie des Elektrons (in German), Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV (1936) 166.

    Google Scholar 

  39. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. T. Heinzl et al., On the observation of vacuum birefringence, Opt. Commun. 267 (2006) 318 [hep-ph/0601076] [SPIRES].

    Article  ADS  Google Scholar 

  41. D. Tommasini and H. Michinel, Light by light diffraction in vacuum, Phys. Rev. A 82 (2010) 011803 [arXiv:1003.5932] [SPIRES].

    ADS  Google Scholar 

  42. A. Di Piazza, K.Z. Hatsagortsyan and C.H. Keitel, Light diffraction by a strong standing electromagnetic wave, Phys. Rev. Lett. 97 (2006) 083603 [hep-ph/0602039] [SPIRES].

    Article  ADS  Google Scholar 

  43. B. King, A. Di Piazza and CH. Keitel, A matterless double slit, Nature Photonics 4 (2010) 92.

    Article  ADS  Google Scholar 

  44. K. Homma, D. Habs and T. Tajima, Probing semi-macroscopic vacua by high fields of lasers, arXiv:1006.4533 [SPIRES].

  45. G.V. Dunne, New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production, Eur. Phys. J. D 55 (2009) 327 [arXiv:0812.3163] [SPIRES].

    ADS  Google Scholar 

  46. R. Schutzhold, H. Gies and G. Dunne, Dynamically assisted Schwinger mechanism, Phys. Rev. Lett. 101 (2008) 130404 [arXiv:0807.0754] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. G.V. Dunne, H. Gies and R. Schutzhold, Catalysis of Schwinger Vacuum Pair Production, Phys. Rev. D 80 (2009) 111301 [arXiv:0908.0948] [SPIRES].

    ADS  Google Scholar 

  48. M. Ruf, G.R. Mocken, C. Muller, K.Z. Hatsagortsyan and C .H. Keitel, Pair production in laser fields oscillating in space and time, Phys. Rev. Lett. 102 (2009) 080402 [arXiv:0810.4047] [SPIRES].

    Article  ADS  Google Scholar 

  49. A. Monin and M.B. Voloshin, Photon-stimulated production of electron-positron pairs in electric field, Phys. Rev. D 81 (2010) 025001 [arXiv:0910.4762] [SPIRES].

    ADS  Google Scholar 

  50. A. Monin and M.B. Voloshin, Semiclassical Calculation of Photon-Stimulated Schwinge Creation, Phys. Rev. D 81 (2010) 085014 [arXiv:1001.3354] [SPIRES].

    ADS  Google Scholar 

  51. T. Heinzl, A. Ilderton and M. Marklund, Finite size effects in stimulated laser pair production, Phys. Lett. B 692 (2010) 250 [arXiv:1002.4018] [SPIRES].

    ADS  Google Scholar 

  52. A. Di Piazza, E. Lotstedt, A.I. Milstein and C.H. Keitel, Barrier control in tunneling photoproduction, Phys. Rev. Lett. 103 (2009) 170403 [arXiv:0906.0726] [SPIRES].

    Article  Google Scholar 

  53. S.S. Bulanov, V.D. Mur, N.B. Narozhny, J. Nees and V. S. Popov, Multiple colliding electromagnetic pulses: a way to lower the threshold of e + e pair production from vacuum, Phys. Rev. Lett. 104 (2010) 220404 [arXiv:1003.2623] [SPIRES].

    Article  ADS  Google Scholar 

  54. V.N. Baier and V.M. Katkov, Pair creation by a photon in an electric field, Phys. Lett. A 374 (2010) 2201 [arXiv:0912.5250] [SPIRES].

    ADS  Google Scholar 

  55. J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, arXiv:1002.0329 [SPIRES].

  56. D. Tommasini, A. Ferrando, H. Michinel and M. Seco, Precision tests of QED and non-standard models by searching photon-photon scatterin g in vacuum with high power lasers, JHEP 11 (2009) 043 [arXiv:0909.4663] [SPIRES].

    Article  ADS  Google Scholar 

  57. S.L. Adler, J. Gamboa, F. Mendez and J. Lopez-Sarrion, Axions and ’Light Shining Through a Wall’: A Detailed Theoretical Analysis, Annals Phys. 323 (2008) 2851 [arXiv:0801.4739] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. http://www.physik.uni-jena.de/inst/ioq//start-Engl. html.

  59. L.W. Davis, Theory of electromagnetic beams, Phys. Rev. A 19 (1979) 1177 [SPIRES].

    ADS  Google Scholar 

  60. J.P. Barton and D.R. Alexander, Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam, J. Appl. Phys. 66 (1989) 2800.

    Article  ADS  Google Scholar 

  61. K.T. McDonald, Gaussian Laser Beams and Particle Acceleration, http://physics.princeton.edu/mcdonald/accel/gaussian.pdf.

  62. L.G. Gouy, Sur une propriete nouvelle des ondes lumineuses (in French), C. R. Acad. Sci. Paris 110 (1890) 1251.

    Google Scholar 

  63. S. Feng and H. Winful, Physical origin of the Gouy phase shift, Opt. Lett. 26 (2001) 485.

    Article  ADS  Google Scholar 

  64. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, fifth edition, Academic Press, Oxford U.K. (1994).

    MATH  Google Scholar 

  65. R.W. Boyd, Nonlinear Optics, third edition, Academic Press, Oxford U.K. (2008).

    Google Scholar 

  66. P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett. 7 (1961) 118 [SPIRES].

    Article  ADS  Google Scholar 

  67. http://www.helmholtz.de/en/research/promoting_research/helmholtz_institutes//helmholtz_institutejena/.

  68. M. Hornung et. al., Temporal pulse control of a multi-10 TW diode-pumped Yb: Gla ss laser, Appl. Phys. B (2010).

  69. A.E. Siegman, Lasers, University Science books, Mill Valley U.S.A. (1986).

  70. http://www.lightcon.com/index.php?topas-products.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Gies.

Additional information

ArXiv ePrint: 1006.5579

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döbrich, B., Gies, H. Axion-like-particle search with high-intensity lasers. J. High Energ. Phys. 2010, 22 (2010). https://doi.org/10.1007/JHEP10(2010)022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)022

Keywords

Navigation