Skip to main content
Log in

Higgs decay with monophoton + signature from low scale supersymmetry breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the decay of a standard model-like Higgs boson into a gravitino and a neutralino, which subsequently decays promptly into another gravitino and a photon. Such a decay can be important in scenarios where the supersymmetry breaking scale is of the order of a few TeV, and in the region of low transverse momenta of the photon, it may provide the dominant contribution to the final state with a photon and two gravitinos. We estimate the relevant standard model backgrounds and the prospects for discovering this Higgs decay through a photon and missing transverse energy signal at the LHC in terms of a simplified model. By promoting the standard MSSM soft terms to supersymmetric operators, involving a dynamical goldstino supermultiplet, the parameters of the simplified model are related to the MSSM parameters and the estimated discovery limits are used in order to constrain the parameter space. We show that it is possible to accommodate a SM- like CP-even neutral Higgs particle with a mass of 125 GeV, without requiring substantial radiative corrections, and with couplings sufficiently large for a signal discovery through the above mentioned Higgs decay channel with the upcoming data from the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino, Phys. Lett. B 70 (1977) 461 [INSPIRE].

    ADS  Google Scholar 

  2. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, A gravitino-goldstino high-energy equivalence theorem, Phys. Lett. B 215 (1988) 313 [INSPIRE].

    ADS  Google Scholar 

  3. S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders, Phys. Rev. D 54 (1996) 5395 [hep-ph/9605398] [INSPIRE].

    ADS  Google Scholar 

  5. S. Dimopoulos, S.D. Thomas and J.D. Wells, Sparticle spectroscopy and electroweak symmetry breaking with gauge mediated supersymmetry breaking, Nucl. Phys. B 488 (1997) 39 [hep-ph/9609434] [INSPIRE].

    Article  ADS  Google Scholar 

  6. H. Baer, M. Brhlik, C.-h. Chen and X. Tata, Signals for the minimal gauge mediated supersymmetry breaking model at the Fermilab Tevatron collider, Phys. Rev. D 55 (1997) 4463 [hep-ph/9610358] [INSPIRE].

    ADS  Google Scholar 

  7. S. Shirai and T. Yanagida, A test for light gravitino scenario at the LHC, Phys. Lett. B 680 (2009)351 [arXiv:0905.4034] [INSPIRE].

    ADS  Google Scholar 

  8. P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, JHEP 08 (2012) 159 [arXiv:1103.6083] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.D. Mason, D.E. Morrissey and D. Poland, Higgs boson decays to neutralinos in low-scale gauge mediation, Phys. Rev. D 80 (2009) 115015 [arXiv:0909.3523] [INSPIRE].

    ADS  Google Scholar 

  12. J.D. Mason and D. Toback, Prospects of searches for gauge mediated supersymmetry with \( {h^0}\to X_1^0X_1^0 \) production in the time-delayed photon + MET final state at the Tevatron, Phys. Lett. B 702 (2011) 377 [arXiv:1105.2194] [INSPIRE].

    ADS  Google Scholar 

  13. P. Fayet, Radiative production of gravitinos and photinos in e + e annihilation, Phys. Lett. B 117 (1982)460 [INSPIRE].

    ADS  Google Scholar 

  14. O. Nachtmann, A. Reiter and M. Wirbel, Single jet and single photon production in proton-anti-proton collisions and e + e annihilation in a supersymmetric model, Z. Phys. C 27 (1985)577 [INSPIRE].

    ADS  Google Scholar 

  15. P. Fayet, Lower limit on the mass of a light gravitino from e + e annihilation experiments, Phys. Lett. B 175 (1986) 471 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. D.A. Dicus, S. Nandi and J. Woodside, A new source of single photons from Z 0 decay, Phys. Lett. B 258 (1991) 231 [INSPIRE].

    ADS  Google Scholar 

  17. J.L. Lopez, D.V. Nanopoulos and A. Zichichi, Supersymmetric photonic signals at LEP, Phys. Rev. Lett. 77 (1996) 5168 [hep-ph/9609524] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J.L. Lopez, D.V. Nanopoulos and A. Zichichi, Single photon signals at LEP in supersymmetric models with a light gravitino, Phys. Rev. D 55 (1997) 5813 [hep-ph/9611437] [INSPIRE].

    ADS  Google Scholar 

  19. K. Mawatari, B. Oexl and Y. Takaesu, Associated production of light gravitinos in e + e and e γ collisions, Eur. Phys. J. C 71 (2011) 1783 [arXiv:1106.5592] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Argurio et al., Collider signatures of goldstini in gauge mediation, JHEP 06 (2012) 096 [arXiv:1112.5058] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Brignole, F. Feruglio and F. Zwirner, Signals of a superlight gravitino at e + e colliders when the other superparticles are heavy, Nucl. Phys. B 516 (1998) 13 [Erratum ibid. B 555 (1999)653-655] [hep-ph/9711516] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Brignole, F. Feruglio, M.L. Mangano and F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy, Nucl. Phys. B 526 (1998) 136 [Erratum ibid. B 582 (2000) 759-761] [hep-ph/9801329] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L3 collaboration, P. Achard et al., Single photon and multiphoton events with missing energy in e + e collisions at LEP, Phys. Lett. B 587 (2004) 16 [hep-ex/0402002] [INSPIRE].

    ADS  Google Scholar 

  24. CDF collaboration, D. Acosta et al., Limits on extra dimensions and new particle production in the exclusive photon and missing energy signature in pp collisions at \( \sqrt{s}=1.8\,TeV \), Phys. Rev. Lett. 89 (2002) 281801 [hep-ex/0205057] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Djouadi and M. Drees, Higgs boson decays into light gravitinos, Phys. Lett. B 407 (1997) 243 [hep-ph/9703452] [INSPIRE].

    ADS  Google Scholar 

  26. I. Antoniadis, E. Dudas, D. Ghilencea and P. Tziveloglou, Non-linear MSSM, Nucl. Phys. B 841 (2010)157 [arXiv:1006.1662] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP 12 (2011) 069 [arXiv:1107.4697] [INSPIRE].

    Article  ADS  Google Scholar 

  28. CERN press release, LHC to run at 4 TeV per beam in 2012, PR01.12 (2012).

  29. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7\,TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  30. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{S}=7\,TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  31. A. Brignole, J. Casas, J. Espinosa and I. Navarro, Low scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

  33. I. Antoniadis, E. Dudas and D. Ghilencea, Supersymmetric models with higher dimensional operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. I. Antoniadis, E. Dudas, D. Ghilencea and P. Tziveloglou, MSSM with dimension-five operators (MSSM(5)), Nucl. Phys. B 808 (2009) 155 [arXiv:0806.3778] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Carena, K. Kong, E. Ponton and J. Zurita, Supersymmetric Higgs bosons and beyond, Phys. Rev. D 81 (2010) 015001 [arXiv:0909.5434] [INSPIRE].

    ADS  Google Scholar 

  36. M. Carena, E. Ponton and J. Zurita, BMSSM Higgs bosons at the 7 TeV LHC, Phys. Rev. D 85 (2012)035007 [arXiv:1111.2049] [INSPIRE].

    ADS  Google Scholar 

  37. F. Boudjema and G. Drieu La Rochelle, SUSY Higgs searches: beyond the MSSM, Phys. Rev. D 85 (2012) 035011 [arXiv:1112.1434] [INSPIRE].

    ADS  Google Scholar 

  38. F. Boudjema and G.D. La Rochelle, Beyond the MSSM Higgs bosons at 125 GeV, Phys. Rev. D 86 (2012) 015018 [arXiv:1203.3141] [INSPIRE].

    ADS  Google Scholar 

  39. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  40. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].

    Article  Google Scholar 

  42. G. Watt, Parton distribution function dependence of benchmark standard model total cross sections at the 7 TeV LHC, JHEP 09 (2011) 069 [arXiv:1106.5788] [INSPIRE].

    Article  ADS  Google Scholar 

  43. CMS collaboration, S. Chatrchyan et al., Search for extra dimensions using the monophoton final state, CMS-PAS-EXO-11-058 (2011).

  44. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  45. CMS collaboration, CMS physics technical design report volume I: detector performance and software, CERN-LHCC-2006-001 (2006).

  46. ATLAS collaboration, G. Aad et al., Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s}=7\,TeV \) with the ATLAS detector, Phys. Rev. D 83 (2011)052005 [arXiv:1012.4389] [INSPIRE].

    ADS  Google Scholar 

  47. A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  48. A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].

  49. A. Belyaev, N. Christensen, and A. Pukhov, CalcHEPA package for calculation of Feynman diagrams and integration over multi-particle phase space, http://theory.sinp.msu.ru/˜pukhov/calchep.html (2005).

  50. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009)066 [arXiv:0907.2441] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. C. Petersson and A. Romagnoni, The MSSM Higgs sector with a dynamical goldstino supermultiplet, JHEP 02 (2012) 142 [arXiv:1111.3368] [INSPIRE].

    Article  ADS  Google Scholar 

  52. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].

    ADS  Google Scholar 

  54. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  55. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Nardecchia, A. Romanino and R. Ziegler, Tree level gauge mediation, JHEP 11 (2009) 112 [arXiv:0909.3058] [INSPIRE].

    Article  ADS  Google Scholar 

  57. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009)143 [arXiv:0801.3278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. J.R. Ellis, K. Enqvist and D.V. Nanopoulos, A very light gravitino in a no scale model, Phys. Lett. B 147 (1984) 99 [INSPIRE].

    ADS  Google Scholar 

  59. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. T. Gherghetta and A. Pomarol, A warped supersymmetric standard model, Nucl. Phys. B 602 (2001)3 [hep-ph/0012378] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. El Kheishen, A. Aboshousha and A. Shafik, Analytic formulas for the neutralino masses and the neutralino mixing matrix, Phys. Rev. D 45 (1992) 4345 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer Petersson.

Additional information

ArXiv ePrint: 1203.4563

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersson, C., Romagnoni, A. & Torre, R. Higgs decay with monophoton + signature from low scale supersymmetry breaking. J. High Energ. Phys. 2012, 16 (2012). https://doi.org/10.1007/JHEP10(2012)016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)016

Keywords

Navigation