Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Implications of protecting the QCD axion in the dual description

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 September 2023
  • Volume 2023, article number 175, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Implications of protecting the QCD axion in the dual description
Download PDF
  • Gongjun Choi  ORCID: orcid.org/0000-0001-8515-55861 &
  • Jacob Leedom2 
  • 237 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The QCD axion can be formulated in a dual description as a massive 2-form field. In this picture, the QCD axion quality problem translates into the question if there are additional 3-forms coupled to the axion other than the QCD 3-form that emerges at low energy. If such forms exist, the quality problem can be resolved via the introduction of other massive 2-forms (and thus corresponding axions), one for each additional 3-form. This can motivate an “axiverse from a high quality QCD axion”. In this work, we discuss this issue in the general case where the QCD axion couples to arbitrarily many 3-forms. Given the multiple axion solution, we discuss the phenomenological implications of the enhanced quality of the QCD axion in the dual description. These include sub-eV axion-like particle search through the axion-photon coupling, the cosmological consistency of a large decay constant QCD axion, and a model for the observed cosmic birefringence.

Article PDF

Download to read the full article text

Similar content being viewed by others

The QCD axion and unification

Article Open access 15 November 2019

UV and IR effects in axion quality control

Article Open access 08 March 2024

Non-invertible Gauss law and axions

Article Open access 12 September 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  5. C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

  6. S.W. Hawking, Quantum Coherence Down the Wormhole, Phys. Lett. B 195 (1987) 337 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  9. D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 (2021) 1669 [arXiv:1810.05338] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

  13. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278 [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

  16. G. Dvali, Strong-CP with and without gravity, arXiv:2209.14219 [INSPIRE].

  17. Z. Chen and A. Kobakhidze, Coloured gravitational instantons, the strong CP problem and the companion axion solution, Eur. Phys. J. C 82 (2022) 596 [arXiv:2108.05549] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Z. Chen et al., Phenomenology of the companion-axion model: photon couplings, Eur. Phys. J. C 82 (2022) 940 [arXiv:2109.12920] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Chen et al., Cosmology of the companion-axion model: dark matter, gravitational waves, and primordial black holes, arXiv:2110.11014 [INSPIRE].

  20. C.P. Burgess, G. Choi and F. Quevedo, UV and IR Effects in Axion Quality Control, arXiv:2301.00549 [INSPIRE].

  21. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Arvanitaki et al., String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Luscher, The Secret Long Range Force in Quantum Field Theories With Instantons, Phys. Lett. B 78 (1978) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  25. C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a Theory of the Strong Interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].

    Article  ADS  Google Scholar 

  26. C.G. Callan Jr., R.F. Dashen and D.J. Gross, A Theory of Hadronic Structure, Phys. Rev. D 19 (1979) 1826 [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Kaloper and L. Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].

    Article  ADS  Google Scholar 

  28. N. Kaloper and L. Sorbo, Where in the String Landscape is Quintessence, Phys. Rev. D 79 (2009) 043528 [arXiv:0810.5346] [INSPIRE].

  29. N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    Article  ADS  Google Scholar 

  30. N. Kaloper and A. Lawrence, London equation for monodromy inflation, Phys. Rev. D 95 (2017) 063526 [arXiv:1607.06105] [INSPIRE].

  31. G. D’Amico, N. Kaloper and A. Lawrence, Monodromy Inflation in the Strong Coupling Regime of the Effective Field Theory, Phys. Rev. Lett. 121 (2018) 091301 [arXiv:1709.07014] [INSPIRE].

  32. K. Choi and J.E. Kim, Harmful Axions in Superstring Models, Phys. Lett. B 154 (1985) 393 [Erratum ibid. 156 (1985) 452] [INSPIRE].

  33. K. Choi and J.E. Kim, Compactification and Axions in E8 × \( {E}_8^{\prime } \) Superstring Models, Phys. Lett. B 165 (1985) 71 [INSPIRE].

  34. T. Banks and M. Dine, Couplings and scales in strongly coupled heterotic string theory, Nucl. Phys. B 479 (1996) 173 [hep-th/9605136] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. K. Choi, Axions and the strong CP problem in M theory, Phys. Rev. D 56 (1997) 6588 [hep-th/9706171] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. V.S. Kaplunovsky, One Loop Threshold Effects in String Unification, Nucl. Phys. B 307 (1988) 145 [hep-th/9205068] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet. 2, Nucl. Phys. B 289 (1987) 319 [INSPIRE].

  40. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  41. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  43. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].

  44. P.W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

  45. D. Budker et al., Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev. X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].

  46. J.A. Dror, S. Gori, J.M. Leedom and N.L. Rodd, Sensitivity of Spin-Precession Axion Experiments, Phys. Rev. Lett. 130 (2023) 181801 [arXiv:2210.06481] [INSPIRE].

    Article  ADS  Google Scholar 

  47. B. Gavela, P. Quílez and M. Ramos, The QCD axion sum rule, arXiv:2305.15465 [INSPIRE].

  48. B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4-d strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].

  49. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. K. Choi and K.S. Jeong, String theoretic QCD axion with stabilized saxion and the pattern of supersymmetry breaking, JHEP 01 (2007) 103 [hep-th/0611279] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. K.-S. Choi, I.-W. Kim and J.E. Kim, String compactification, QCD axion and axion-photon-photon coupling, JHEP 03 (2007) 116 [hep-ph/0612107] [INSPIRE].

  54. B.S. Acharya, K. Bobkov and P. Kumar, An M Theory Solution to the Strong CP Problem and Constraints on the Axiverse, JHEP 11 (2010) 105 [arXiv:1004.5138] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].

  56. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  57. P.J. Steinhardt and M.S. Turner, Saving the Invisible Axion, Phys. Lett. B 129 (1983) 51 [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Lazarides, R.K. Schaefer, D. Seckel and Q. Shafi, Dilution of Cosmological Axions by Entropy Production, Nucl. Phys. B 346 (1990) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  59. M. Kawasaki, T. Moroi and T. Yanagida, Can decaying particles raise the upper bound on the Peccei-Quinn scale?, Phys. Lett. B 383 (1996) 313 [hep-ph/9510461] [INSPIRE].

  60. T. Banks and M. Dine, The Cosmology of string theoretic axions, Nucl. Phys. B 505 (1997) 445 [hep-th/9608197] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. M. Kawasaki, T.T. Yanagida and N. Yokozaki, Cosmological problems of the string axion alleviated by high scale SUSY of m3/2 ⋍ 10–100 TeV, Phys. Lett. B 753 (2016) 389 [arXiv:1510.04171] [INSPIRE].

    Article  ADS  Google Scholar 

  62. G. Choi and E.D. Schiappacasse, PBH assisted search for QCD axion dark matter, JCAP 09 (2022) 072 [arXiv:2205.02255] [INSPIRE].

    Article  ADS  Google Scholar 

  63. F. D’Eramo and K. Schmitz, Imprint of a scalar era on the primordial spectrum of gravitational waves, Phys. Rev. Research. 1 (2019) 013010 [arXiv:1904.07870] [INSPIRE].

  64. G. Choi, R. Jinno and T.T. Yanagida, Probing PeV scale SUSY breaking with satellite galaxies and primordial gravitational waves, Phys. Rev. D 104 (2021) 095018 [arXiv:2107.12804] [INSPIRE].

  65. Y. Minami and E. Komatsu, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data, Phys. Rev. Lett. 125 (2020) 221301 [arXiv:2011.11254] [INSPIRE].

    Article  ADS  Google Scholar 

  66. J.R. Eskilt and E. Komatsu, Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data, Phys. Rev. D 106 (2022) 063503 [arXiv:2205.13962] [INSPIRE].

  67. G. Choi, W. Lin, L. Visinelli and T.T. Yanagida, Cosmic birefringence and electroweak axion dark energy, Phys. Rev. D 104 (2021) L101302 [arXiv:2106.12602] [INSPIRE].

  68. S. Gasparotto and I. Obata, Cosmic birefringence from monodromic axion dark energy, JCAP 08 (2022) 025 [arXiv:2203.09409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. K. Murai, F. Naokawa, T. Namikawa and E. Komatsu, Isotropic cosmic birefringence from early dark energy, Phys. Rev. D 107 (2023) L041302 [arXiv:2209.07804] [INSPIRE].

  70. K. Choi, String or M theory axion as a quintessence, Phys. Rev. D 62 (2000) 043509 [hep-ph/9902292] [INSPIRE].

  71. Y. Nomura, T. Watari and T. Yanagida, Quintessence axion potential induced by electroweak instanton effects, Phys. Lett. B 484 (2000) 103 [hep-ph/0004182] [INSPIRE].

  72. M. Ibe, M. Yamazaki and T.T. Yanagida, Quintessence Axion Revisited in Light of Swampland Conjectures, Class. Quant. Grav. 36 (2019) 235020 [arXiv:1811.04664] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. G. Choi, M. Suzuki and T.T. Yanagida, Quintessence axion dark energy and a solution to the hubble tension, Phys. Lett. B 805 (2020) 135408 [arXiv:1910.00459] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  74. J.E. Kim, Y. Kim and S. Nam, Quintessential Axions from a New Confining Force, arXiv:2204.13268 [INSPIRE].

  75. C. Csaki, N. Kaloper and J. Terning, Dimming supernovae without cosmic acceleration, Phys. Rev. Lett. 88 (2002) 161302 [hep-ph/0111311] [INSPIRE].

  76. C. Csaki, N. Kaloper and J. Terning, Effects of the intergalactic plasma on supernova dimming via photon axion oscillations, Phys. Lett. B 535 (2002) 33 [hep-ph/0112212] [INSPIRE].

  77. C. Csaki, N. Kaloper, M. Peloso and J. Terning, Super GZK photons from photon axion mixing, JCAP 05 (2003) 005 [hep-ph/0302030] [INSPIRE].

  78. C. Csaki, N. Kaloper and J. Terning, Exorcising w < −1, Annals Phys. 317 (2005) 410 [astro-ph/0409596] [INSPIRE].

  79. D. Harari and P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background, Phys. Lett. B 289 (1992) 67 [INSPIRE].

    Article  ADS  Google Scholar 

  80. M.A. Fedderke, P.W. Graham and S. Rajendran, Axion Dark Matter Detection with CMB Polarization, Phys. Rev. D 100 (2019) 015040 [arXiv:1903.02666] [INSPIRE].

  81. N. Kaloper, General relativity on the multiverse and nature’s hierarchies, Phys. Rev. D 106 (2022) 044023 [arXiv:2202.08860] [INSPIRE].

  82. N. Kaloper, Hidden variables of gravity and geometry and the cosmological constant problem, Phys. Rev. D 106 (2022) 065009 [arXiv:2202.06977] [INSPIRE].

  83. N. Kaloper and A. Westphal, Quantum-mechanical mechanism for reducing the cosmological constant, Phys. Rev. D 106 (2022) L101701 [arXiv:2204.13124] [INSPIRE].

  84. N. Kaloper, de Sitter space decay and cosmological constant relaxation in unimodular gravity with charged membranes, Phys. Rev. D 108 (2023) 025005 [arXiv:2305.02349] [INSPIRE].

  85. G. Dvali, S. Folkerts and A. Franca, How neutrino protects the axion, Phys. Rev. D 89 (2014) 105025 [arXiv:1312.7273] [INSPIRE].

    Article  ADS  Google Scholar 

  86. O. Sakhelashvili, Consistency of the dual formulation of axion solutions to the strong CP problem, Phys. Rev. D 105 (2022) 085020 [arXiv:2110.03386] [INSPIRE].

Download references

Acknowledgments

G.C. would like to thank DESY and Imperial College London for their hospitality and support during the completion of this work. J.M.L. would like to thank King’s College and the University of Groningen for their hospitality during the completion of this work. We are grateful to Clifford Burgess, Kiwoon Choi, Tony Gherghetta, Thomas Konstandin, Fernando Quevedo, Jérémie Quevillon, Fabrizio Rompineve, Geraldine Servant and Alexander Westphal for discussions. We thank Alexander Westphal and Nemanja Kaloper for comments on a draft of this work. J.M.L. is supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe”.

Author information

Authors and Affiliations

  1. Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland

    Gongjun Choi

  2. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany

    Jacob Leedom

Authors
  1. Gongjun Choi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jacob Leedom
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gongjun Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2307.08733

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G., Leedom, J. Implications of protecting the QCD axion in the dual description. J. High Energ. Phys. 2023, 175 (2023). https://doi.org/10.1007/JHEP09(2023)175

Download citation

  • Received: 14 August 2023

  • Revised: 18 September 2023

  • Accepted: 19 September 2023

  • Published: 26 September 2023

  • DOI: https://doi.org/10.1007/JHEP09(2023)175

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Axions and ALPs
  • Cosmology of Theories BSM
  • Gauge Symmetry
  • Global Symmetries
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature