Abstract
We construct a scotogenic Majorana neutrino mass model in a gauged U(1)X extension of the standard model, where the mass of the gauge boson and the unbroken gauge symmetry, which leads to a stable dark matter (DM), can be achieved through the Stueckelberg mechanism. It is found that the simplest version of the extended model consists of the two inert-Higgs doublets and one vector-like singlet fermion. In addition to the Majorana neutrino mass, we study the lepton flavor violation (LFV) processes, such as ℓi → ℓjγ, ℓi → 3ℓj, μ − e conversion rate in nucleus, and muonium-antimuonium oscillation. We show that the sensitivities of μ → 3e and μ − e conversion rate designed in Mu3e and COMET/Mu2e experiments make both decays the most severe constraints on the μ → e LFV processes. It is found that τ → μγ and τ → 3μ can reach the designed significance level of Belle II. In addition to explaining the DM relic density, we also show that the DM-nucleon scattering cross section can satisfy the currently experimental limit of DM direct detection.
Article PDF
Similar content being viewed by others
References
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].
C.M. Perez and L. Vigani, Searching for the Muon Decay to Three Electrons with the Mu3e Experiment, Universe 7 (2021) 420 [INSPIRE].
COMET collaboration, COMET Phase-I Technical Design Report, PTEP 2020 (2020) 033C01 [arXiv:1812.09018] [INSPIRE].
E. Diociaiuti, μ → e conversion and the Mu2e experiment at Fermilab, PoS EPS-HEP2019 (2020) 232 [INSPIRE].
R.J. Barlow, The PRISM/PRIME project, Nucl. Phys. B Proc. Suppl. 218 (2011) 44 [INSPIRE].
A.Y. Bai et al., Snowmass2021 Whitepaper: Muonium to antimuonium conversion, arXiv:2203.11406 [INSPIRE].
J. Leite, A. Morales, J.W.F. Valle and C.A. Vaquera-Araujo, Scotogenic dark matter and Dirac neutrinos from unbroken gauged B − L symmetry, Phys. Lett. B 807 (2020) 135537 [arXiv:2003.02950] [INSPIRE].
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].
A. Merle and M. Platscher, Parity Problem of the Scotogenic Neutrino Model, Phys. Rev. D 92 (2015) 095002 [arXiv:1502.03098] [INSPIRE].
T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP 01 (2014) 160 [arXiv:1312.2840] [INSPIRE].
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].
Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].
E. Arganda, M.J. Herrero and A.M. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: Universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [INSPIRE].
T.S. Kosmas, S. Kovalenko and I. Schmidt, Nuclear mu−-e− conversion in strange quark sea, Phys. Lett. B 511 (2001) 203 [hep-ph/0102101] [INSPIRE].
R. Conlin and A.A. Petrov, Muonium-antimuonium oscillations in effective field theory, Phys. Rev. D 102 (2020) 095001 [arXiv:2005.10276] [INSPIRE].
L. Willmann et al., New bounds from searching for muonium to anti-muonium conversion, Phys. Rev. Lett. 82 (1999) 49 [hep-ex/9807011] [INSPIRE].
K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments, Universe 7 (2021) 459 [arXiv:2111.03086] [INSPIRE].
SINDRUM II collaboration, Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z′ Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
CMS collaboration, Search for a Narrow Resonance Lighter than 200 GeV Decaying to a Pair of Muons in Proton-Proton Collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 124 (2020) 131802 [arXiv:1912.04776] [INSPIRE].
CMS collaboration, Search for electroweak production of charginos and neutralinos at \( \sqrt{s} \) = 13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum, arXiv:2205.09597 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2201.10759
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chen, CH., Chiang, CW., Nomura, T. et al. Lepton flavor violation and scotogenic Majorana neutrino mass in a Stueckelberg U(1)X model. J. High Energ. Phys. 2022, 166 (2022). https://doi.org/10.1007/JHEP09(2022)166
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2022)166