Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Lepton flavor violation and scotogenic Majorana neutrino mass in a Stueckelberg U(1)X model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 September 2022
  • volume 2022, Article number: 166 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Lepton flavor violation and scotogenic Majorana neutrino mass in a Stueckelberg U(1)X model
Download PDF
  • Chuan-Hung Chen1,2,
  • Cheng-Wei Chiang  ORCID: orcid.org/0000-0003-1716-01692,3,
  • Takaaki Nomura4 &
  • …
  • Chun-Wei Su3 
  • 167 Accesses

  • 2 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

We construct a scotogenic Majorana neutrino mass model in a gauged U(1)X extension of the standard model, where the mass of the gauge boson and the unbroken gauge symmetry, which leads to a stable dark matter (DM), can be achieved through the Stueckelberg mechanism. It is found that the simplest version of the extended model consists of the two inert-Higgs doublets and one vector-like singlet fermion. In addition to the Majorana neutrino mass, we study the lepton flavor violation (LFV) processes, such as ℓi → ℓjγ, ℓi → 3ℓj, μ − e conversion rate in nucleus, and muonium-antimuonium oscillation. We show that the sensitivities of μ → 3e and μ − e conversion rate designed in Mu3e and COMET/Mu2e experiments make both decays the most severe constraints on the μ → e LFV processes. It is found that τ → μγ and τ → 3μ can reach the designed significance level of Belle II. In addition to explaining the DM relic density, we also show that the DM-nucleon scattering cross section can satisfy the currently experimental limit of DM direct detection.

Article PDF

Download to read the full article text

Similar content being viewed by others

Flipped U(1) extended standard model and Majorana dark matter

Article Open access 03 December 2020

Cao H. Nam

Majorana dark matter and neutrino mass with $$S_{3}$$ symmetry

Article 08 June 2020

Subhasmita Mishra

Magnetic moments of leptons, charged lepton flavor violations and dark matter phenomenology of a minimal radiative Dirac neutrino mass model

Article Open access 19 August 2022

Bibhabasu De, Debottam Das, … Nirakar Sahoo

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

  2. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  3. MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].

  4. C.M. Perez and L. Vigani, Searching for the Muon Decay to Three Electrons with the Mu3e Experiment, Universe 7 (2021) 420 [INSPIRE].

  5. COMET collaboration, COMET Phase-I Technical Design Report, PTEP 2020 (2020) 033C01 [arXiv:1812.09018] [INSPIRE].

  6. E. Diociaiuti, μ → e conversion and the Mu2e experiment at Fermilab, PoS EPS-HEP2019 (2020) 232 [INSPIRE].

  7. R.J. Barlow, The PRISM/PRIME project, Nucl. Phys. B Proc. Suppl. 218 (2011) 44 [INSPIRE].

    Article  ADS  Google Scholar 

  8. A.Y. Bai et al., Snowmass2021 Whitepaper: Muonium to antimuonium conversion, arXiv:2203.11406 [INSPIRE].

  9. J. Leite, A. Morales, J.W.F. Valle and C.A. Vaquera-Araujo, Scotogenic dark matter and Dirac neutrinos from unbroken gauged B − L symmetry, Phys. Lett. B 807 (2020) 135537 [arXiv:2003.02950] [INSPIRE].

  10. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  11. Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  12. A. Merle and M. Platscher, Parity Problem of the Scotogenic Neutrino Model, Phys. Rev. D 92 (2015) 095002 [arXiv:1502.03098] [INSPIRE].

  13. T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP 01 (2014) 160 [arXiv:1312.2840] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

  15. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

  16. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].

  17. E. Arganda, M.J. Herrero and A.M. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: Universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [INSPIRE].

    Article  ADS  Google Scholar 

  18. T.S. Kosmas, S. Kovalenko and I. Schmidt, Nuclear mu−-e− conversion in strange quark sea, Phys. Lett. B 511 (2001) 203 [hep-ph/0102101] [INSPIRE].

  19. R. Conlin and A.A. Petrov, Muonium-antimuonium oscillations in effective field theory, Phys. Rev. D 102 (2020) 095001 [arXiv:2005.10276] [INSPIRE].

  20. L. Willmann et al., New bounds from searching for muonium to anti-muonium conversion, Phys. Rev. Lett. 82 (1999) 49 [hep-ex/9807011] [INSPIRE].

  21. K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

  22. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments, Universe 7 (2021) 459 [arXiv:2111.03086] [INSPIRE].

    Article  ADS  Google Scholar 

  24. SINDRUM II collaboration, Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].

  25. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  26. Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  27. S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

  29. Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

  30. Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  31. A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z′ Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].

  32. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  33. CMS collaboration, Search for a Narrow Resonance Lighter than 200 GeV Decaying to a Pair of Muons in Proton-Proton Collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 124 (2020) 131802 [arXiv:1912.04776] [INSPIRE].

  34. CMS collaboration, Search for electroweak production of charginos and neutralinos at \( \sqrt{s} \) = 13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum, arXiv:2205.09597 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, National Cheng-Kung University, Tainan, 70101, Taiwan

    Chuan-Hung Chen

  2. Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan

    Chuan-Hung Chen & Cheng-Wei Chiang

  3. Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei, 10617, Taiwan

    Cheng-Wei Chiang & Chun-Wei Su

  4. College of Physics, Sichuan University, Chengdu, 610065, China

    Takaaki Nomura

Authors
  1. Chuan-Hung Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Cheng-Wei Chiang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Takaaki Nomura
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Chun-Wei Su
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Cheng-Wei Chiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2201.10759

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Chiang, CW., Nomura, T. et al. Lepton flavor violation and scotogenic Majorana neutrino mass in a Stueckelberg U(1)X model. J. High Energ. Phys. 2022, 166 (2022). https://doi.org/10.1007/JHEP09(2022)166

Download citation

  • Received: 04 February 2022

  • Revised: 23 August 2022

  • Accepted: 07 September 2022

  • Published: 20 September 2022

  • DOI: https://doi.org/10.1007/JHEP09(2022)166

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lepton Flavour Violation (charged)
  • Models for Dark Matter
  • Neutrino Mixing
  • New Gauge Interactions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature