Abstract
We parametrise the space of all possible flavour non-universal \( \mathfrak{u} \)(1)X extensions of the Standard Model that embed inside anomaly-free semi-simple gauge theories, including up to three right-handed neutrinos. More generally, we parametrise all abelian extensions (i.e. by any number of \( \mathfrak{u} \)(1)’s) of the SM with such semi-simple completions. The resulting space of abelian extensions is a collection of planes of dimensions ≤ 6. Numerically, we find that roughly 2.5% of anomaly-free \( \mathfrak{u} \)(1)X extensions of the SM with a maximum charge ratio of ±10 can be embedded in such semi-simple gauge theories. Any vector-like anomaly-free abelian extension embeds (at least) inside \( \mathfrak{g} \) = \( \mathfrak{su} \)(12) ⊕ \( \mathfrak{su} \)(2)L ⊕ \( \mathfrak{su} \)(2)R. We also provide a simple computer program that tests whether a given \( \mathfrak{u}{(1)}_{X^1} \) ⊕ \( \mathfrak{u}{(1)}_{X^2} \) ⊕ . . . charge assignment has a semi-simple completion and, if it does, outputs a set of maximal gauge algebras in which the \( \mathfrak{sm} \) ⊕ \( \mathfrak{u}{(1)}_{X^1} \) ⊕ \( \mathfrak{u}{(1)}_{X^2} \) ⊕ . . . model may be embedded. We hope this is a useful tool in pointing the way from \( \mathfrak{sm} \) ⊕ \( \mathfrak{u}{(1)}_{X^1} \) ⊕ \( \mathfrak{u}{(1)}_{X^2} \) ⊕ . . . models, which have many phenomenological uses, to their unified gauge completions in the ultraviolet.
References
A. Greljo, P. Stangl, A.E. Thomsen and J. Zupan, On (g − 2)μ from gauged U(1)X, JHEP 07 (2022) 098 [arXiv:2203.13731] [INSPIRE].
Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].
LHCb collaboration, Measurement of CP-averaged observables in the B0 → K*0μ+μ− decay, Phys. Rev. Lett. 125 (2020) 011802 [arXiv:2003.04831] [INSPIRE].
LHCb collaboration, Angular analysis of the B+ → K*+μ+μ− decay, Phys. Rev. Lett. 126 (2021) 161802 [arXiv:2012.13241] [INSPIRE].
LHCb, ATLAS and CMS collaborations, Combination of the ATLAS, CMS and LHCb results on the \( {B}_{(s)}^0 \) → μ+μ− decays, Tech. Rep. CERN-LHCb-CONF-2020-002, CERN, Geneva, Switzerland (2020).
LHCb collaboration, Measurement of the \( {B}_s^0 \) → μ+μ− decay properties and search for the B0 → μ+μ− and \( {B}_s^0 \) → μ+μ−γ decays, Phys. Rev. D 105 (2022) 012010 [arXiv:2108.09283] [INSPIRE].
LHCb collaboration, Analysis of neutral B-meson decays into two muons, Phys. Rev. Lett. 128 (2022) 041801 [arXiv:2108.09284] [INSPIRE].
LHCb collaboration, Differential branching fractions and isospin asymmetries of B → K(*)μ+μ− decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
LHCb collaboration, Angular analysis and differential branching fraction of the decay \( {B}_s^0 \) → ϕμ+μ−, JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
LHCb collaboration, Measurements of the S-wave fraction in B0 → K+π−μ+μ− decays and the B0 → K*(892)0μ+μ− differential branching fraction, JHEP 11 (2016) 047 [Erratum ibid. 04 (2017) 142] [arXiv:1606.04731] [INSPIRE].
LHCb collaboration, Branching fraction measurements of the rare \( {B}_s^0 \) → ϕμ+μ− and \( {B}_s^0 \) → \( {f}_2^{\prime } \)(1525)μ+μ− decays, Phys. Rev. Lett. 127 (2021) 151801 [arXiv:2105.14007] [INSPIRE].
LHCb collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ− decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277 [arXiv:2103.11769] [INSPIRE].
C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
J. Davighi, B. Gripaios and N. Lohitsiri, Global anomalies in the Standard Model(s) and beyond, JHEP 07 (2020) 232 [arXiv:1910.11277] [INSPIRE].
J. Davighi, Anomalous Z′ bosons for anomalous B decays, JHEP 08 (2021) 101 [arXiv:2105.06918] [INSPIRE].
L. Di Luzio, M. Nardecchia and C. Toni, Light vectors coupled to anomalous currents with harmless Wess-Zumino terms, Phys. Rev. D 105 (2022) 115042 [arXiv:2204.05945] [INSPIRE].
B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082 [Erratum ibid. 08 (2019) 064] [arXiv:1812.04602] [INSPIRE].
B.C. Allanach, B. Gripaios and J. Tooby-Smith, Anomaly cancellation with an extra gauge boson, Phys. Rev. Lett. 125 (2020) 161601 [arXiv:2006.03588] [INSPIRE].
H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].
H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].
H. Georgi, The state of the art — gauge theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].
R. Bause, G. Hiller, T. Höhne, D.F. Litim and T. Steudtner, B-anomalies from flavorful U(1)′ extensions, safely, Eur. Phys. J. C 82 (2022) 42 [arXiv:2109.06201] [INSPIRE].
B.C. Allanach, B.C. Allanach, B. Gripaios, B. Gripaios, J. Tooby-Smith and J. Tooby-Smith, Semisimple extensions of the Standard Model gauge algebra, Phys. Rev. D 104 (2021) 035035 [Erratum ibid. 106 (2022) 019901] [arXiv:2104.14555] [INSPIRE].
J. Davighi and J. Tooby-Smith, Electroweak flavour unification, arXiv:2201.07245 [INSPIRE].
C.D. Froggatt, H.B. Nielsen and D.J. Smith, Fermion masses and anti-grand unification, Phys. Lett. B 385 (1996) 150 [hep-ph/9607250] [INSPIRE].
C.D. Froggatt, M. Gibson and H.B. Nielsen, Neutrino masses and mixings from an anomaly free SMG × U(1)2 model, Phys. Lett. B 446 (1999) 256 [hep-ph/9811265] [INSPIRE].
E. Abbott, Flatland: a romance of many dimensions, Roberts Brothers (1885).
J. Davighi, A. Greljo and A.E. Thomsen, Leptoquarks with exactly stable protons, Phys. Lett. B 833 (2022) 137310 [arXiv:2202.05275] [INSPIRE].
B.C. Allanach and J. Davighi, Naturalising the third family hypercharge model for neutral current B-anomalies, Eur. Phys. J. C 79 (2019) 908 [arXiv:1905.10327] [INSPIRE].
B.C. Allanach, J.E. Camargo-Molina and J. Davighi, Global fits of third family hypercharge models to neutral current B-anomalies and electroweak precision observables, Eur. Phys. J. C 81 (2021) 721 [arXiv:2103.12056] [INSPIRE].
A. Greljo, Y. Soreq, P. Stangl, A.E. Thomsen and J. Zupan, Muonic force behind flavor anomalies, JHEP 04 (2022) 151 [arXiv:2107.07518] [INSPIRE].
N. Jacobson, Completely reducible lie algebras of linear transformations, in Nathan Jacobson collected mathematical papers, Springer (1989), p. 117.
E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].
J. Tooby-Smith, Arithmetical, geometrical, and categorical forays into particle physics, Ph.D. thesis, Cambridge U., Cambridge, U.K. (2021).
B. Gruber and M. Samuel, Semisimple subalgebras of semisimple Lie algebras: the algebra (SU(6)) as a physically significant example, in Group theory and its applications, E.M. Loebl ed., Academic Press (1975), p. 95.
J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].
B.C. Allanach, \( \mathrm{U}{(1)}_{B_3-{L}_2} \) explanation of the neutral current B-anomalies, Eur. Phys. J. C 81 (2021) 56 [Erratum ibid. 81 (2021) 321] [arXiv:2009.02197] [INSPIRE].
R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured B − L local symmetry and anomalous rare B decays, Phys. Lett. B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].
C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3-3{L}_{\mu }} \) gauge symmetry as a simple description of b → s anomalies, Phys. Rev. D 98 (2018) 095002 [arXiv:1705.00915] [INSPIRE].
A. Greljo, P. Stangl and A.E. Thomsen, A model of muon anomalies, Phys. Lett. B 820 (2021) 136554 [arXiv:2103.13991] [INSPIRE].
B.C. Allanach and J. Davighi, Third family hypercharge model for \( {R}_{K^{\left(\ast \right)}} \) and aspects of the fermion mass problem, JHEP 12 (2018) 075 [arXiv:1809.01158] [INSPIRE].
B. Allanach and J. Davighi, MW helps select Z′ models for b → sℓℓ anomalies, Eur. Phys. J. C 82 (2022) 745 [arXiv:2205.12252] [INSPIRE].
R.N. Mohapatra and R.E. Marshak, Local B − L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].
A. Davidson, B − L as the fourth color within an SU(2)L × U(1)R × U(1) model, Phys. Rev. D 20 (1979) 776 [INSPIRE].
X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z′ model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].
I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980) 23.
V.G. Kac, Vertex algebras for beginners, American Mathematical Society (1998).
E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, American Mathematical Society (2004).
D. Mitzman, Integral bases for affine Lie algebras and their universal enveloping algebras, American Mathematical Society (1985).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2206.11271
Supplementary Information
ESM 1
(ZIP 108 kb)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Davighi, J., Tooby-Smith, J. Flatland: abelian extensions of the Standard Model with semi-simple completions. J. High Energ. Phys. 2022, 159 (2022). https://doi.org/10.1007/JHEP09(2022)159
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2022)159
Keywords
- Gauge Symmetry
- New Gauge Interactions
- Grand Unification