Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Flatland: abelian extensions of the Standard Model with semi-simple completions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Cohomological localization of N $$ \mathcal{N} $$ = 2 gauge theories with matter

21 September 2020

Guido Festuccia, Anastasios Gorantis, … Lorenzo Ruggeri

On refined Chern-Simons/topological string duality for classical gauge groups

15 November 2022

M. Y. Avetisyan & R. L. Mkrtchyan

A Physical Origin for Singular Support Conditions in Geometric Langlands Theory

08 May 2019

Chris Elliott & Philsang Yoo

An anomaly-free atlas: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model

13 February 2019

B. C. Allanach, Joe Davighi & Scott Melville

Classification of 5d N $$ \mathcal{N} $$ = 1 gauge theories

16 December 2020

Lakshya Bhardwaj & Gabi Zafrir

Notes on two-dimensional pure supersymmetric gauge theories

27 April 2021

Wei Gu, Eric Sharpe & Hao Zou

The Embedding Tensor, Leibniz–Loday Algebras, and Their Higher Gauge Theories

17 September 2019

Alexei Kotov & Thomas Strobl

Four-dimensional noncommutative deformations of U(1) gauge theory and L∞ bootstrap.

10 January 2022

Maxim Kurkov & Patrizia Vitale

A tale of exceptional 3d dualities

21 March 2019

Sergio Benvenuti

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 September 2022

Flatland: abelian extensions of the Standard Model with semi-simple completions

  • Joe Davighi  ORCID: orcid.org/0000-0003-1002-09721 &
  • Joseph Tooby-Smith  ORCID: orcid.org/0000-0003-2831-598X2 

Journal of High Energy Physics volume 2022, Article number: 159 (2022) Cite this article

  • 80 Accesses

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We parametrise the space of all possible flavour non-universal \( \mathfrak{u} \)(1)X extensions of the Standard Model that embed inside anomaly-free semi-simple gauge theories, including up to three right-handed neutrinos. More generally, we parametrise all abelian extensions (i.e. by any number of \( \mathfrak{u} \)(1)’s) of the SM with such semi-simple completions. The resulting space of abelian extensions is a collection of planes of dimensions ≤ 6. Numerically, we find that roughly 2.5% of anomaly-free \( \mathfrak{u} \)(1)X extensions of the SM with a maximum charge ratio of ±10 can be embedded in such semi-simple gauge theories. Any vector-like anomaly-free abelian extension embeds (at least) inside \( \mathfrak{g} \) = \( \mathfrak{su} \)(12) ⊕ \( \mathfrak{su} \)(2)L ⊕ \( \mathfrak{su} \)(2)R. We also provide a simple computer program that tests whether a given \( \mathfrak{u}{(1)}_{X^1} \) ⊕ \( \mathfrak{u}{(1)}_{X^2} \) ⊕ . . . charge assignment has a semi-simple completion and, if it does, outputs a set of maximal gauge algebras in which the \( \mathfrak{sm} \) ⊕ \( \mathfrak{u}{(1)}_{X^1} \) ⊕ \( \mathfrak{u}{(1)}_{X^2} \) ⊕ . . . model may be embedded. We hope this is a useful tool in pointing the way from \( \mathfrak{sm} \) ⊕ \( \mathfrak{u}{(1)}_{X^1} \) ⊕ \( \mathfrak{u}{(1)}_{X^2} \) ⊕ . . . models, which have many phenomenological uses, to their unified gauge completions in the ultraviolet.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. A. Greljo, P. Stangl, A.E. Thomsen and J. Zupan, On (g − 2)μ from gauged U(1)X, JHEP 07 (2022) 098 [arXiv:2203.13731] [INSPIRE].

    Article  ADS  Google Scholar 

  2. Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  3. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. LHCb collaboration, Measurement of CP-averaged observables in the B0 → K*0μ+μ− decay, Phys. Rev. Lett. 125 (2020) 011802 [arXiv:2003.04831] [INSPIRE].

  5. LHCb collaboration, Angular analysis of the B+ → K*+μ+μ− decay, Phys. Rev. Lett. 126 (2021) 161802 [arXiv:2012.13241] [INSPIRE].

  6. LHCb, ATLAS and CMS collaborations, Combination of the ATLAS, CMS and LHCb results on the \( {B}_{(s)}^0 \) → μ+μ− decays, Tech. Rep. CERN-LHCb-CONF-2020-002, CERN, Geneva, Switzerland (2020).

  7. LHCb collaboration, Measurement of the \( {B}_s^0 \) → μ+μ− decay properties and search for the B0 → μ+μ− and \( {B}_s^0 \) → μ+μ−γ decays, Phys. Rev. D 105 (2022) 012010 [arXiv:2108.09283] [INSPIRE].

  8. LHCb collaboration, Analysis of neutral B-meson decays into two muons, Phys. Rev. Lett. 128 (2022) 041801 [arXiv:2108.09284] [INSPIRE].

  9. LHCb collaboration, Differential branching fractions and isospin asymmetries of B → K(*)μ+μ− decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].

  10. LHCb collaboration, Angular analysis and differential branching fraction of the decay \( {B}_s^0 \) → ϕμ+μ−, JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].

  11. LHCb collaboration, Measurements of the S-wave fraction in B0 → K+π−μ+μ− decays and the B0 → K*(892)0μ+μ− differential branching fraction, JHEP 11 (2016) 047 [Erratum ibid. 04 (2017) 142] [arXiv:1606.04731] [INSPIRE].

  12. LHCb collaboration, Branching fraction measurements of the rare \( {B}_s^0 \) → ϕμ+μ− and \( {B}_s^0 \) → \( {f}_2^{\prime } \)(1525)μ+μ− decays, Phys. Rev. Lett. 127 (2021) 151801 [arXiv:2105.14007] [INSPIRE].

  13. LHCb collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ− decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  14. LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277 [arXiv:2103.11769] [INSPIRE].

  15. C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

  16. J. Davighi, B. Gripaios and N. Lohitsiri, Global anomalies in the Standard Model(s) and beyond, JHEP 07 (2020) 232 [arXiv:1910.11277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Davighi, Anomalous Z′ bosons for anomalous B decays, JHEP 08 (2021) 101 [arXiv:2105.06918] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Di Luzio, M. Nardecchia and C. Toni, Light vectors coupled to anomalous currents with harmless Wess-Zumino terms, Phys. Rev. D 105 (2022) 115042 [arXiv:2204.05945] [INSPIRE].

  19. B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082 [Erratum ibid. 08 (2019) 064] [arXiv:1812.04602] [INSPIRE].

  20. B.C. Allanach, B. Gripaios and J. Tooby-Smith, Anomaly cancellation with an extra gauge boson, Phys. Rev. Lett. 125 (2020) 161601 [arXiv:2006.03588] [INSPIRE].

  21. H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

  22. H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

  23. H. Georgi, The state of the art — gauge theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].

  24. R. Bause, G. Hiller, T. Höhne, D.F. Litim and T. Steudtner, B-anomalies from flavorful U(1)′ extensions, safely, Eur. Phys. J. C 82 (2022) 42 [arXiv:2109.06201] [INSPIRE].

    Article  ADS  Google Scholar 

  25. B.C. Allanach, B.C. Allanach, B. Gripaios, B. Gripaios, J. Tooby-Smith and J. Tooby-Smith, Semisimple extensions of the Standard Model gauge algebra, Phys. Rev. D 104 (2021) 035035 [Erratum ibid. 106 (2022) 019901] [arXiv:2104.14555] [INSPIRE].

  26. J. Davighi and J. Tooby-Smith, Electroweak flavour unification, arXiv:2201.07245 [INSPIRE].

  27. C.D. Froggatt, H.B. Nielsen and D.J. Smith, Fermion masses and anti-grand unification, Phys. Lett. B 385 (1996) 150 [hep-ph/9607250] [INSPIRE].

  28. C.D. Froggatt, M. Gibson and H.B. Nielsen, Neutrino masses and mixings from an anomaly free SMG × U(1)2 model, Phys. Lett. B 446 (1999) 256 [hep-ph/9811265] [INSPIRE].

  29. E. Abbott, Flatland: a romance of many dimensions, Roberts Brothers (1885).

  30. J. Davighi, A. Greljo and A.E. Thomsen, Leptoquarks with exactly stable protons, Phys. Lett. B 833 (2022) 137310 [arXiv:2202.05275] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. B.C. Allanach and J. Davighi, Naturalising the third family hypercharge model for neutral current B-anomalies, Eur. Phys. J. C 79 (2019) 908 [arXiv:1905.10327] [INSPIRE].

    Article  ADS  Google Scholar 

  32. B.C. Allanach, J.E. Camargo-Molina and J. Davighi, Global fits of third family hypercharge models to neutral current B-anomalies and electroweak precision observables, Eur. Phys. J. C 81 (2021) 721 [arXiv:2103.12056] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Greljo, Y. Soreq, P. Stangl, A.E. Thomsen and J. Zupan, Muonic force behind flavor anomalies, JHEP 04 (2022) 151 [arXiv:2107.07518] [INSPIRE].

    Article  ADS  Google Scholar 

  34. N. Jacobson, Completely reducible lie algebras of linear transformations, in Nathan Jacobson collected mathematical papers, Springer (1989), p. 117.

  35. E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].

  36. J. Tooby-Smith, Arithmetical, geometrical, and categorical forays into particle physics, Ph.D. thesis, Cambridge U., Cambridge, U.K. (2021).

  37. B. Gruber and M. Samuel, Semisimple subalgebras of semisimple Lie algebras: the algebra (SU(6)) as a physically significant example, in Group theory and its applications, E.M. Loebl ed., Academic Press (1975), p. 95.

  38. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].

  39. B.C. Allanach, \( \mathrm{U}{(1)}_{B_3-{L}_2} \) explanation of the neutral current B-anomalies, Eur. Phys. J. C 81 (2021) 56 [Erratum ibid. 81 (2021) 321] [arXiv:2009.02197] [INSPIRE].

  40. R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured B − L local symmetry and anomalous rare B decays, Phys. Lett. B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].

    Article  ADS  Google Scholar 

  41. C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3-3{L}_{\mu }} \) gauge symmetry as a simple description of b → s anomalies, Phys. Rev. D 98 (2018) 095002 [arXiv:1705.00915] [INSPIRE].

  42. A. Greljo, P. Stangl and A.E. Thomsen, A model of muon anomalies, Phys. Lett. B 820 (2021) 136554 [arXiv:2103.13991] [INSPIRE].

  43. B.C. Allanach and J. Davighi, Third family hypercharge model for \( {R}_{K^{\left(\ast \right)}} \) and aspects of the fermion mass problem, JHEP 12 (2018) 075 [arXiv:1809.01158] [INSPIRE].

  44. B. Allanach and J. Davighi, MW helps select Z′ models for b → sℓℓ anomalies, Eur. Phys. J. C 82 (2022) 745 [arXiv:2205.12252] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R.N. Mohapatra and R.E. Marshak, Local B − L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].

  46. A. Davidson, B − L as the fourth color within an SU(2)L × U(1)R × U(1) model, Phys. Rev. D 20 (1979) 776 [INSPIRE].

  47. X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z′ model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].

  48. I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980) 23.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. V.G. Kac, Vertex algebras for beginners, American Mathematical Society (1998).

  50. E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, American Mathematical Society (2004).

  51. D. Mitzman, Integral bases for affine Lie algebras and their universal enveloping algebras, American Mathematical Society (1985).

Download references

Author information

Authors and Affiliations

  1. Physik-Institut, Universität Zürich, CH 8057, Zürich, Switzerland

    Joe Davighi

  2. Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA

    Joseph Tooby-Smith

Authors
  1. Joe Davighi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Joseph Tooby-Smith
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Joseph Tooby-Smith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2206.11271

Supplementary Information

ESM 1

(ZIP 108 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davighi, J., Tooby-Smith, J. Flatland: abelian extensions of the Standard Model with semi-simple completions. J. High Energ. Phys. 2022, 159 (2022). https://doi.org/10.1007/JHEP09(2022)159

Download citation

  • Received: 15 July 2022

  • Accepted: 06 September 2022

  • Published: 20 September 2022

  • DOI: https://doi.org/10.1007/JHEP09(2022)159

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge Symmetry
  • New Gauge Interactions
  • Grand Unification
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.