Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The timbre of Hawking gravitons: an effective description of energy transport from holography

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 September 2022
  • volume 2022, Article number: 92 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The timbre of Hawking gravitons: an effective description of energy transport from holography
Download PDF
  • Temple He1,
  • R. Loganayagam2,
  • Mukund Rangamani1,
  • Akhil Sivakumar2 &
  • …
  • Julio Virrueta1 
  • 102 Accesses

  • 4 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Planar black holes in AdS, which are holographically dual to compressible relativistic fluids, have a long-lived phonon mode that captures the physics of attenuated sound propagation and transports energy in the plasma. We describe the open effective field theory of this fluctuating phonon degree of freedom. The dynamics of the phonon is encoded in a single scalar field whose gravitational coupling has non-trivial spatial momentum dependence. This description fits neatly into the paradigm of classifying gravitational modes by their Markovianity index, depending on whether they are long-lived. The sound scalar is a non-Markovian field with index 3 − d for a d-dimensional fluid. We reproduce (and extend) the dispersion relation of the holographic sound mode to quartic order in derivatives, constructing in the process the effective field theory governing its attenuated dynamics and associated stochastic fluctuations. We also remark on the presence of additional spatially homogeneous zero modes in the gravitational problem, which remain disconnected from the phonon Goldstone mode.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].

  2. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

  3. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. Part II. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

  5. C. Jana, R. Loganayagam and M. Rangamani, Open quantum systems and Schwinger-Keldysh holograms, JHEP 07 (2020) 242 [arXiv:2004.02888] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J.K. Ghosh, R. Loganayagam, S.G. Prabhu, M. Rangamani, A. Sivakumar and V. Vishal, Effective field theory of stochastic diffusion from gravity, JHEP 05 (2021) 130 [arXiv:2012.03999] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T. He, R. Loganayagam, M. Rangamani and J. Virrueta, An effective description of momentum diffusion in a charged plasma from holography, JHEP 01 (2022) 145 [arXiv:2108.03244] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].

  9. J. de Boer, M.P. Heller and N. Pinzani-Fokeeva, Holographic Schwinger-Keldysh effective field theories, JHEP 05 (2019) 188 [arXiv:1812.06093] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Y. Bu, T. Demircik and M. Lublinsky, All order effective action for charge diffusion from Schwinger-Keldysh holography, JHEP 05 (2021) 187 [arXiv:2012.08362] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. B. Chakrabarty, J. Chakravarty, S. Chaudhuri, C. Jana, R. Loganayagam and A. Sivakumar, Nonlinear Langevin dynamics via holography, JHEP 01 (2020) 165 [arXiv:1906.07762] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Loganayagam, K. Ray and A. Sivakumar, Fermionic open EFT from holography, arXiv:2011.07039 [INSPIRE].

  13. R. Loganayagam, K. Ray, S.K. Sharma and A. Sivakumar, Holographic KMS relations at finite density, JHEP 03 (2021) 233 [arXiv:2011.08173] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. B. Chakrabarty and A.P. M., Open effective theory of scalar field in rotating plasma, JHEP 08 (2021) 169 [arXiv:2011.13223] [INSPIRE].

  15. Y. Bu, M. Fujita and S. Lin, Ginzburg-Landau effective action for a fluctuating holographic superconductor, JHEP 09 (2021) 168 [arXiv:2106.00556] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].

  19. B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. B Proc. Suppl. 192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].

  20. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  21. V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Theoretical Advanced Study Institute in Elementary Particle Physics. String theory and its applications: from meV to the Planck scale, (2012), p. 348 [arXiv:1107.5780] [INSPIRE].

  22. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  24. H. Kodama and A. Ishibashi, A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701 [hep-th/0305147] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

  26. E.S. de Oliveira, A.S. Miranda and V.T. Zanchin, New results on the physical interpretation of black-brane gravitational perturbations, Phys. Rev. D 100 (2019) 064047 [arXiv:1812.09236] [INSPIRE].

  27. G. Michalogiorgakis and S.S. Pufu, Low-lying gravitational modes in the scalar sector of the global AdS4 black hole, JHEP 02 (2007) 023 [hep-th/0612065] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Morgan, V. Cardoso, A.S. Miranda, C. Molina and V.T. Zanchin, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP 09 (2009) 117 [arXiv:0907.5011] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S.M. Diles, L.A.H. Mamani, A.S. Miranda and V.T. Zanchin, Third-order relativistic hydrodynamics: dispersion relations and transport coefficients of a dual plasma, JHEP 05 (2020) 019 [arXiv:1909.05199] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP 05 (2015) 060 [arXiv:1502.00636] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. T. He, R. Loganayagam, M. Rangamani and J. Virrueta, Sound and charge diffusion in holographic plasmas, work in progress (2022).

Download references

Author information

Authors and Affiliations

  1. Center for Quantum Mathematics and Physics (QMAP), Department of Physics & Astronomy, University of California, Davis, CA, 95616, USA

    Temple He, Mukund Rangamani & Julio Virrueta

  2. International Centre for Theoretical Sciences (ICTS-TIFR), Tata Institute of Fundamental Research, Shivakote, Hesaraghatta, Bangalore, 560089, India

    R. Loganayagam & Akhil Sivakumar

Authors
  1. Temple He
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. R. Loganayagam
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mukund Rangamani
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Akhil Sivakumar
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Julio Virrueta
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mukund Rangamani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2202.04079

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Loganayagam, R., Rangamani, M. et al. The timbre of Hawking gravitons: an effective description of energy transport from holography. J. High Energ. Phys. 2022, 92 (2022). https://doi.org/10.1007/JHEP09(2022)092

Download citation

  • Received: 06 May 2022

  • Accepted: 22 August 2022

  • Published: 13 September 2022

  • DOI: https://doi.org/10.1007/JHEP09(2022)092

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Holography and Hydrodynamics
  • Non-Equilibrium Field Theory
  • Thermal Field Theory

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature