Abstract
The Dimension-5 Seesaw Portal is a Type-I Seesaw model extended by d = 5 operators involving the sterile neutrino states, leading to new interactions between all neutrinos and the Standard Model neutral bosons. In this work we focus primarily on the implications of these new operators at the GeV-scale. In particular, we recalculate the heavy neutrino full decay width, up to three-body decays. We also review bounds on the dipole operator, and revisit LEP constraints on its coefficient. Finally, we turn to heavy neutrino pair production from Higgs decays, where the former are long-lived and disintegrate into a photon and a light neutrino. We probe this process by recasting two ATLAS searches for non-pointing photons, showing the expected event distribution in terms of arrival time tγ and pointing variable |∆zγ|.
Article PDF
References
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
R. N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
M. Malinsky, J. C. Romao and J. W. F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
R. N. Mohapatra and J. W. F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].
F. F. Deppisch, P. S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].
A. M. Abdullahi et al., The Present and Future Status of Heavy Neutral Leptons, in 2022 Snowmass Summer Study, [arXiv:2203.08039] [INSPIRE].
F. del Aguila, S. Bar-Shalom, A. Soni and J. Wudka, Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders, Phys. Lett. B 670 (2009) 399 [arXiv:0806.0876] [INSPIRE].
A. Aparici, K. Kim, A. Santamaria and J. Wudka, Right-handed neutrino magnetic moments, Phys. Rev. D 80 (2009) 013010 [arXiv:0904.3244] [INSPIRE].
Y. Liao and X.-D. Ma, Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos, Phys. Rev. D 96 (2017) 015012 [arXiv:1612.04527] [INSPIRE].
S. Bhattacharya and J. Wudka, Dimension-seven operators in the standard model with right handed neutrinos, Phys. Rev. D 94 (2016) 055022 [Erratum ibid. 95 (2017) 039904] [arXiv:1505.05264] [INSPIRE].
H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Operator bases in effective field theories with sterile neutrinos: d ≤ 9, JHEP 11 (2021) 003 [arXiv:2105.09329] [INSPIRE].
J. Terol-Calvo, M. Tórtola and A. Vicente, High-energy constraints from low-energy neutrino nonstandard interactions, Phys. Rev. D 101 (2020) 095010 [arXiv:1912.09131] [INSPIRE].
F. J. Escrihuela, L. J. Flores, O. G. Miranda and J. Rendón, Global constraints on neutral-current generalized neutrino interactions, JHEP 07 (2021) 061 [arXiv:2105.06484] [INSPIRE].
I. Bischer and W. Rodejohann, General neutrino interactions from an effective field theory perspective, Nucl. Phys. B 947 (2019) 114746 [arXiv:1905.08699] [INSPIRE].
T. Han, J. Liao, H. Liu and D. Marfatia, Scalar and tensor neutrino interactions, JHEP 07 (2020) 207 [arXiv:2004.13869] [INSPIRE].
A. Falkowski, M. González-Alonso and O. Naviliat-Cuncic, Comprehensive analysis of beta decays within and beyond the Standard Model, JHEP 04 (2021) 126 [arXiv:2010.13797] [INSPIRE].
L. Duarte, J. Peressutti and O. A. Sampayo, Not-that-heavy Majorana neutrino signals at the LHC, J. Phys. G 45 (2018) 025001 [arXiv:1610.03894] [INSPIRE].
J. Alcaide, S. Banerjee, M. Chala and A. Titov, Probes of the Standard Model effective field theory extended with a right-handed neutrino, JHEP 08 (2019) 031 [arXiv:1905.11375] [INSPIRE].
J. M. Butterworth, M. Chala, C. Englert, M. Spannowsky and A. Titov, Higgs phenomenology as a probe of sterile neutrinos, Phys. Rev. D 100 (2019) 115019 [arXiv:1909.04665] [INSPIRE].
R. Beltrán, G. Cottin, J. C. Helo, M. Hirsch, A. Titov and Z. S. Wang, Long-lived heavy neutral leptons at the LHC: four-fermion single-NR operators, JHEP 01 (2022) 044 [arXiv:2110.15096] [INSPIRE].
G. Cottin, J. C. Helo, M. Hirsch, A. Titov and Z. S. Wang, Heavy neutral leptons in effective field theory and the high-luminosity LHC, JHEP 09 (2021) 039 [arXiv:2105.13851] [INSPIRE].
L. Duarte, J. Peressutti, I. Romero and O. A. Sampayo, Majorana neutrinos with effective interactions in B decays, Eur. Phys. J. C 79 (2019) 593 [arXiv:1904.07175] [INSPIRE].
L. Duarte, G. Zapata and O. A. Sampayo, Angular and polarization observables for Majorana-mediated B decays with effective interactions, Eur. Phys. J. C 80 (2020) 896 [arXiv:2006.11216] [INSPIRE].
J. De Vries, H. K. Dreiner, J. Y. Günther, Z. S. Wang and G. Zhou, Long-lived Sterile Neutrinos at the LHC in Effective Field Theory, JHEP 03 (2021) 148 [arXiv:2010.07305] [INSPIRE].
A. Biekötter, M. Chala and M. Spannowsky, The effective field theory of low scale see-saw at colliders, Eur. Phys. J. C 80 (2020) 743 [arXiv:2007.00673] [INSPIRE].
G. Zhou, J. Y. Günther, Z. S. Wang, J. de Vries and H. K. Dreiner, Long-lived sterile neutrinos at Belle II in effective field theory, JHEP 04 (2022) 057 [arXiv:2111.04403] [INSPIRE].
V. Cirigliano, W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti and R. Ruiz, Leptonic anomalous magnetic moments in ν SMEFT, JHEP 08 (2021) 103 [arXiv:2105.11462] [INSPIRE].
L. Duarte, G. Zapata and O. A. Sampayo, Final taus and initial state polarization signatures from effective interactions of Majorana neutrinos at future e+ e− colliders, Eur. Phys. J. C 79 (2019) 240 [arXiv:1812.01154] [INSPIRE].
L. Duarte, G. Zapata and O. A. Sampayo, Angular and polarization trails from effective interactions of Majorana neutrinos at the LHeC, Eur. Phys. J. C 78 (2018) 352 [arXiv:1802.07620] [INSPIRE].
D. Barducci and E. Bertuzzo, The see-saw portal at future Higgs factories: the role of dimension six operators, JHEP 06 (2022) 077 [arXiv:2201.11754] [INSPIRE].
G. Zapata, T. Urruzola, O. A. Sampayo and L. Duarte, Lepton collider probes for Majorana neutrino effective interactions, Eur. Phys. J. C 82 (2022) 544 [arXiv:2201.02480] [INSPIRE].
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
A. Anisimov, Majorana Dark Matter, in 6th International Workshop on the Identification of Dark Matter, World Scientific, Singapore (2006), pp. 439–449 [DOI] [hep-ph/0612024] [INSPIRE].
M. L. Graesser, Broadening the Higgs boson with right-handed neutrinos and a higher dimension operator at the electroweak scale, Phys. Rev. D 76 (2007) 075006 [arXiv:0704.0438] [INSPIRE].
M. L. Graesser, Experimental Constraints on Higgs Boson Decays to TeV-scale Right-Handed Neutrinos, arXiv:0705.2190 [INSPIRE].
G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Dipole Portal to Heavy Neutral Leptons, Phys. Rev. D 98 (2018) 115015 [arXiv:1803.03262] [INSPIRE].
V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, JCAP 01 (2021) 039 [arXiv:2007.15563] [INSPIRE].
A. Caputo, P. Hernández, J. Lopez-Pavon and J. Salvado, The seesaw portal in testable models of neutrino masses, JHEP 06 (2017) 112 [arXiv:1704.08721] [INSPIRE].
J. Jones-Pérez, J. Masias and J. D. Ruiz-Álvarez, Search for Long-Lived Heavy Neutrinos at the LHC with a VBF Trigger, Eur. Phys. J. C 80 (2020) 642 [arXiv:1912.08206] [INSPIRE].
D. Barducci, E. Bertuzzo, A. Caputo, P. Hernández and B. Mele, The see-saw portal at future Higgs Factories, JHEP 03 (2021) 117 [arXiv:2011.04725] [INSPIRE].
A. Ibarra, E. Molinaro and S. T. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν-Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].
J. A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3+2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].
A. M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].
J. C. Helo, S. Kovalenko and I. Schmidt, Sterile neutrinos in lepton number and lepton flavor violating decays, Nucl. Phys. B 853 (2011) 80 [arXiv:1005.1607] [INSPIRE].
K. Bondarenko, A. Boyarsky, D. Gorbunov and O. Ruchayskiy, Phenomenology of GeV-scale Heavy Neutral Leptons, JHEP 11 (2018) 032 [arXiv:1805.08567] [INSPIRE].
P. Coloma, E. Fernández-Martínez, M. González-López, J. Hernández-García and Z. Pavlovic, GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, Eur. Phys. J. C 81 (2021) 78 [arXiv:2007.03701] [INSPIRE].
S. Kovalenko, Z. Lu and I. Schmidt, Lepton Number Violating Processes Mediated by Majorana Neutrinos at Hadron Colliders, Phys. Rev. D 80 (2009) 073014 [arXiv:0907.2533] [INSPIRE].
C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys. 87 (2015) 531 [arXiv:1403.6344] [INSPIRE].
C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin and S. Zhou, Electromagnetic neutrinos in laboratory experiments and astrophysics, Annalen Phys. 528 (2016) 198 [arXiv:1506.05387] [INSPIRE].
Borexino collaboration, Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data, Phys. Rev. D 96 (2017) 091103 [arXiv:1707.09355] [INSPIRE].
F. Capozzi and G. Raffelt, Axion and neutrino bounds improved with new calibrations of the tip of the red-giant branch using geometric distance determinations, Phys. Rev. D 102 (2020) 083007 [arXiv:2007.03694] [INSPIRE].
P. D. Bolton, F. F. Deppisch and C. Hati, Probing new physics with long-range neutrino interactions: an effective field theory approach, JHEP 07 (2020) 013 [arXiv:2004.08328] [INSPIRE].
L3 collaboration, Search for anomalous production of single photon events in e+ e− annihilations at the Z resonance, Phys. Lett. B 297 (1992) 469 [INSPIRE].
OPAL collaboration, Measurement of single photon production in e+ e− collisions near the Z0 resonance, Z. Phys. C 65 (1995) 47 [INSPIRE].
DELPHI collaboration, Search for new phenomena using single photon events in the DELPHI detector at LEP, Z. Phys. C 74 (1997) 577 [INSPIRE].
S. N. Gninenko and N. V. Krasnikov, Limits on the magnetic moment of sterile neutrino and two photon neutrino decay, Phys. Lett. B 450 (1999) 165 [hep-ph/9808370] [INSPIRE].
NOMAD collaboration, The NOMAD experiment at the CERN SPS, Nucl. Instrum. Meth. A 404 (1998) 96 [INSPIRE].
J. L. Lopez, D. V. Nanopoulos and A. Zichichi, Single photon signals at LEP in supersymmetric models with a light gravitino, Phys. Rev. D 55 (1997) 5813 [hep-ph/9611437] [INSPIRE].
CMS collaboration, Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, arXiv:2206.08956 [INSPIRE].
CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].
ATLAS collaboration, Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector, JHEP 10 (2019) 265 [arXiv:1905.09787] [INSPIRE].
CMS collaboration, Search for physics beyond the standard model in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2020) 051 [arXiv:1911.04968] [INSPIRE].
ATLAS collaboration, Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 016 [arXiv:1809.11105] [INSPIRE].
ATLAS collaboration, Search for nonpointing and delayed photons in the diphoton and missing transverse momentum final state in 8 TeV pp collisions at the LHC using the ATLAS detector, Phys. Rev. D 90 (2014) 112005 [arXiv:1409.5542] [INSPIRE].
ATLAS collaboration, Search for nonpointing photons in the diphoton and \( {E}_T^{miss} \) final state in \( \sqrt{s} \) = 7 TeV proton-proton collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 012001 [arXiv:1304.6310] [INSPIRE].
CMS collaboration, Search for long-lived particles using delayed photons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 112003 [arXiv:1909.06166] [INSPIRE].
CMS collaboration, Search for Long-Lived Particles Decaying to Photons and Missing Energy in Proton-Proton Collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 722 (2013) 273 [arXiv:1212.1838] [INSPIRE].
D. J. Mahon, Search for Displaced Photons from Exotic Decays of the Higgs Boson with the ATLAS Detector, Ph.D. Thesis, Department of Physics, Columbia University, New York, U.S.A (2021) [DOI] [INSPIRE].
Z. Zhang, First observation of the production of three massive vector bosons and search for long-lived particles using delayed photons in pp collisions at \( \sqrt{s} \) = 13TeV, Ph.D. Thesis, Division of Physics, Mathematics and Astronomy (PMA), Caltech, Pasadena, U.S.A. (2020) [DOI] [INSPIRE].
S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e− e+, pp, and e− p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].
M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].
J. Kersten and A. Y. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].
J. Lopez-Pavon, S. Pascoli and C.-f. Wong, Can heavy neutrinos dominate neutrinoless double beta decay?, Phys. Rev. D 87 (2013) 093007 [arXiv:1209.5342] [INSPIRE].
S. Antusch, E. Cazzato and O. Fischer, Resolvable heavy neutrino-antineutrino oscillations at colliders, Mod. Phys. Lett. A 34 (2019) 1950061 [arXiv:1709.03797] [INSPIRE].
P. Hernández, J. Jones-Pérez and O. Suarez-Navarro, Majorana vs Pseudo-Dirac Neutrinos at the ILC, Eur. Phys. J. C 79 (2019) 220 [arXiv:1810.07210] [INSPIRE].
CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, ATLAS-CONF-2020-052, CERN, Geneva, Switzerland (2020).
CMS collaboration, Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 105 (2022) 092007 [arXiv:2201.11585] [INSPIRE].
A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
ATLAS collaboration, Search for displaced photons produced in exotic decays of the Higgs boson using 13 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2022-017, CERN, Geneva, Switzerland (2022).
B. Dutta, A. Gurrola, W. Johns, T. Kamon, P. Sheldon and K. Sinha, Vector Boson Fusion Processes as a Probe of Supersymmetric Electroweak Sectors at the LHC, Phys. Rev. D 87 (2013) 035029 [arXiv:1210.0964] [INSPIRE].
A. G. Delannoy et al., Probing Dark Matter at the LHC using Vector Boson Fusion Processes, Phys. Rev. Lett. 111 (2013) 061801 [arXiv:1304.7779] [INSPIRE].
T. Liu, L. Wang and J. M. Yang, Pseudo-goldstino and electroweakinos via VBF processes at LHC, JHEP 02 (2015) 177 [arXiv:1411.6105] [INSPIRE].
G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jelinski and R. Szafron, Search for doubly charged Higgs bosons through vector boson fusion at the LHC and beyond, Phys. Rev. D 92 (2015) 015016 [arXiv:1504.03999] [INSPIRE].
A. Flórez et al., Searching for New Heavy Neutral Gauge Bosons using Vector Boson Fusion Processes at the LHC, Phys. Lett. B 767 (2017) 126 [arXiv:1609.09765] [INSPIRE].
A. Flórez, K. Gui, A. Gurrola, C. Patiño and D. Restrepo, Expanding the Reach of Heavy Neutrino Searches at the LHC, Phys. Lett. B 778 (2018) 94 [arXiv:1708.03007] [INSPIRE].
B. Dutta, G. Palacio, J. D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE].
A. Flórez et al., Probing heavy spin-2 bosons with γγ final states from vector boson fusion processes at the LHC, Phys. Rev. D 99 (2019) 035034 [arXiv:1812.06824] [INSPIRE].
A. Flórez et al., Anapole Dark Matter via Vector Boson Fusion Processes at the LHC, Phys. Rev. D 100 (2019) 016017 [arXiv:1902.01488] [INSPIRE].
S. Duque-Escobar, D. Ocampo-Henao and J. D. Ruiz-Álvarez, Vector boson fusion topology and simplified models for dark matter searches at colliders, arXiv:2111.13082 [INSPIRE].
G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].
J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D. G. Öztürk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO, Comput. Phys. Commun. 197 (2015) 312 [arXiv:1402.1178] [INSPIRE].
K. G. Chetyrkin, J. H. Kühn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].
T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].
D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from W γ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].
C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev. D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].
N. D. Christensen and C. Duhr, FeynRules-Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0-A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
A. Chan et al., Performance of the HPC calorimeter in DELPHI, IEEE Trans. Nucl. Sci. 42 (1995) 491 [INSPIRE].
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2205.13550
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Delgado, F., Duarte, L., Jones-Pérez, J. et al. Assessment of the dimension-5 seesaw portal and impact of exotic Higgs decays on non-pointing photon searches. J. High Energ. Phys. 2022, 79 (2022). https://doi.org/10.1007/JHEP09(2022)079
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2022)079