Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Multi-track displaced vertices at B-factories
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Hunt for rare processes and long-lived particles at FCC-ee

20 October 2021

Marcin Chrzaszcz, Rebeca Gonzalez Suarez & Stéphane Monteil

On the origin of long-lived particles

09 December 2020

Jared Barron & David Curtin

Heavy neutrinos in displaced vertex searches at the LHC and HL-LHC

11 February 2020

Marco Drewes & Jan Hajer

Forecasting dark showers at Belle II

01 December 2022

Elias Bernreuther, Kai Böse, … Kai Schmidt-Hoberg

Producing and detecting long-lived particles at different experiments at the LHC

09 February 2022

Chaochen Yuan, Guoming Chen, … Yue Zhao

Search for exotic decays of the Higgs boson into long-lived particles in pp collisions at s $$ \sqrt{s} $$ = 13 TeV using displaced vertices in the ATLAS inner detector

30 November 2021

The ATLAS collaboration, G. Aad, … L. Zwalinski

Enhancing sensitivities to long-lived particles with high granularity calorimeters at the LHC

13 November 2020

Jia Liu, Zhen Liu, … Xiao-Ping Wang

Timing information at HL-LHC: complete determination of masses of dark matter and long lived particle

24 March 2020

Zachary Flowers, Dong Woo Kang, … Christopher Rogan

Exclusive displaced hadronic signatures in the LHC forward region

20 January 2020

Xabier Cid Vidal, Yuhsin Tsai & Jose Zurita

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 September 2021

Multi-track displaced vertices at B-factories

  • Mason Acevedo1,
  • Albany Blackburn1,
  • Nikita Blinov2,3,4,
  • Brian Shuve  ORCID: orcid.org/0000-0002-3524-20211 &
  • …
  • Mavis Stone1 

Journal of High Energy Physics volume 2021, Article number: 154 (2021) Cite this article

  • 102 Accesses

  • 4 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We propose a program at B-factories of inclusive, multi-track displaced vertex searches, which are expected to be low background and give excellent sensitivity to non-minimal hidden sectors. Multi-particle hidden sectors often include long-lived particles (LLPs) which result from approximate symmetries, and we classify the possible decays of GeV-scale LLPs in an effective field theory framework. Considering several LLP production modes, including dark photons and dark Higgs bosons, we study the sensitivity of LLP searches with different number of displaced vertices per event and track requirements per displaced vertex, showing that inclusive searches can have sensitivity to a large range of hidden sector models that are otherwise unconstrained by current or planned searches.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in proceedings of the Community Summer Study 2013: Snowmass on the Mississippi, Minneapolis, MN, U.S.A., 29 July–6 August 2013, arXiv:1311.0029 [INSPIRE].

  2. J. Alexander et al., Proceedings of the Dark Sectors 2016 Workshop: Community Report, Menlo Park, California, U.S.A., 28–30 April 2016, arXiv:1608.08632 [INSPIRE].

  3. M. Battaglieri et al., U.S. Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in proceedings of the U.S. Cosmic Visions: New Ideas in Dark Matter, College Park, MD, U.S.A., 23–25 March 2017, arXiv:1707.04591 [INSPIRE].

  4. J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].

    Article  ADS  Google Scholar 

  5. B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  6. P. Fayet, Light spin 1/2 or spin 0 dark matter particles, Phys. Rev. D 70 (2004) 023514 [hep-ph/0403226] [INSPIRE].

  7. L.B. Okun, Limits of electrodynamics: Paraphotons?, Sov. Phys. JETP 56 (1982) 502 [Zh. Eksp. Teor. Fiz. 83 (1982) 892] [INSPIRE].

  8. B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M.J.G. Veltman and F.J. Yndurain, Radiative corrections to WW scattering, Nucl. Phys. B 325 (1989) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  12. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

  13. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].

  14. KLOE-2 collaboration, Limit on the production of a light vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].

  15. BaBar collaboration, Search for a Dark Photon in e+e− Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

  16. KLOE-2 collaboration, Dark Photon Searches with the KLOE Detector, Acta Phys. Polon. A 127 (2015) 1565 [INSPIRE].

  17. NA48/2 collaboration, Search for the dark photon in π0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].

  18. LHCb collaboration, Search for A′ → μ+μ− Decays, Phys. Rev. Lett. 124 (2020) 041801 [arXiv:1910.06926] [INSPIRE].

  19. BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].

  20. NA62 collaboration, Search for production of an invisible dark photon in π0 decays, JHEP 05 (2019) 182 [arXiv:1903.08767] [INSPIRE].

  21. D. Banerjee et al., Dark matter search in missing energy events with NA64, Phys. Rev. Lett. 123 (2019) 121801 [arXiv:1906.00176] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].

  23. Y. Bai and T.M.P. Tait, Inelastic Dark Matter at the LHC, Phys. Lett. B 710 (2012) 335 [arXiv:1109.4144] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Izaguirre, G. Krnjaic and B. Shuve, Discovering Inelastic Thermal-Relic Dark Matter at Colliders, Phys. Rev. D 93 (2016) 063523 [arXiv:1508.03050] [INSPIRE].

    Article  ADS  Google Scholar 

  25. E. Izaguirre, Y. Kahn, G. Krnjaic and M. Moschella, Testing Light Dark Matter Coannihilation With Fixed-Target Experiments, Phys. Rev. D 96 (2017) 055007 [arXiv:1703.06881] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.R. Jordan, Y. Kahn, G. Krnjaic, M. Moschella and J. Spitz, Signatures of Pseudo-Dirac Dark Matter at High-Intensity Neutrino Experiments, Phys. Rev. D 98 (2018) 075020 [arXiv:1806.05185] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment, Phys. Rev. D 99 (2019) 115001 [arXiv:1902.05075] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Y.-D. Tsai, P. deNiverville and M.X. Liu, Dark Photon and Muon g − 2 Inspired Inelastic Dark Matter Models at the High-Energy Intensity Frontier, Phys. Rev. Lett. 126 (2021) 181801 [arXiv:1908.07525] [INSPIRE].

  29. M. Duerr, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg and P. Tunney, Invisible and displaced dark matter signatures at Belle II, JHEP 02 (2020) 039 [arXiv:1911.03176] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Duerr, T. Ferber, C. Garcia-Cely, C. Hearty and K. Schmidt-Hoberg, Long-lived Dark Higgs and Inelastic Dark Matter at Belle II, JHEP 04 (2021) 146 [arXiv:2012.08595] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D.W. Kang, P. Ko and C.-T. Lu, Exploring properties of long-lived particles in inelastic dark matter models at Belle II, JHEP 04 (2021) 269 [arXiv:2101.02503] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  33. G.D. Kribs, D. McKeen and N. Raj, Breaking up the Proton: An Affair with Dark Forces, Phys. Rev. Lett. 126 (2021) 011801 [arXiv:2007.15655] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Muon g − 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  36. LHC New Physics Working Group, Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].

  37. J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9–10 (2015) 8 [arXiv:1506.03116] [INSPIRE].

    Article  Google Scholar 

  38. O. Buchmueller et al., Simplified Models for Displaced Dark Matter Signatures, JHEP 09 (2017) 076 [arXiv:1704.06515] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Alimena et al., Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, J. Phys. G 47 (2020) 090501 [arXiv:1903.04497] [INSPIRE].

    Article  Google Scholar 

  40. BaBar collaboration, Search for a Narrow Resonance in e+e− to Four Lepton Final States, in proceedings of the 24th International Symposium on Lepton-Photon Interactions at High Energy (LP09), Hamburg, Germany, 17–22 August 2009, arXiv:0908.2821 [INSPIRE].

  41. BaBar collaboration, Search for Low-Mass Dark-Sector Higgs Bosons, Phys. Rev. Lett. 108 (2012) 211801 [arXiv:1202.1313] [INSPIRE].

  42. Belle collaboration, Search for heavy neutrinos at Belle, Phys. Rev. D 87 (2013) 071102 [Erratum ibid. 95 (2017) 099903] [arXiv:1301.1105] [INSPIRE].

  43. Belle collaboration, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114 (2015) 211801 [arXiv:1502.00084] [INSPIRE].

  44. BaBar collaboration, Search for a muonic dark force at BABAR, Phys. Rev. D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].

  45. BaBar collaboration, Search for a Stable Six-Quark State at BABAR, Phys. Rev. Lett. 122 (2019) 072002 [arXiv:1810.04724] [INSPIRE].

  46. Belle-II collaboration, Search for an Invisibly Decaying Z′ Boson at Belle II in e+e− → μ+μ−(e±μ∓) Plus Missing Energy Final States, Phys. Rev. Lett. 124 (2020) 141801 [arXiv:1912.11276] [INSPIRE].

  47. BaBar collaboration, Search for a Dark Leptophilic Scalar in e+e− Collisions, Phys. Rev. Lett. 125 (2020) 181801 [arXiv:2005.01885] [INSPIRE].

  48. Belle-II collaboration, Search for Axion-Like Particles produced in e+e− collisions at Belle II, Phys. Rev. Lett. 125 (2020) 161806 [arXiv:2007.13071] [INSPIRE].

  49. BaBar collaboration, Search for Long-Lived Particles in e+e− Collisions, Phys. Rev. Lett. 114 (2015) 171801 [arXiv:1502.02580] [INSPIRE].

  50. L. Lee, C. Ohm, A. Soffer and T.-T. Yu, Collider Searches for Long-Lived Particles Beyond the Standard Model, Prog. Part. Nucl. Phys. 106 (2019) 210 [arXiv:1810.12602] [INSPIRE].

    Article  ADS  Google Scholar 

  51. LHCb collaboration, Searches for low-mass dimuon resonances, JHEP 10 (2020) 156 [arXiv:2007.03923] [INSPIRE].

  52. C.O. Dib, J.C. Helo, M. Nayak, N.A. Neill, A. Soffer and J. Zamora-Saa, Searching for a sterile neutrino that mixes predominantly with ντ at B factories, Phys. Rev. D 101 (2020) 093003 [arXiv:1908.09719] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Filimonova, R. Schäfer and S. Westhoff, Probing dark sectors with long-lived particles at BELLE II, Phys. Rev. D 101 (2020) 095006 [arXiv:1911.03490] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Dey et al., Long-lived light neutralinos at Belle II, JHEP 02 (2021) 211 [arXiv:2012.00438] [INSPIRE].

    Article  ADS  Google Scholar 

  55. E. Fermi, An attempt of a theory of beta radiation. 1, Z. Phys. 88 (1934) 161 [INSPIRE].

  56. Y. Cui and B. Shuve, Probing Baryogenesis with Displaced Vertices at the LHC, JHEP 02 (2015) 049 [arXiv:1409.6729] [INSPIRE].

    Article  ADS  Google Scholar 

  57. R. Contino, K. Max and R.K. Mishra, Searching for elusive dark sectors with terrestrial and celestial observations, JHEP 06 (2021) 127 [arXiv:2012.08537] [INSPIRE].

    Article  ADS  Google Scholar 

  58. C. Arina, J. Hajer and P. Klose, Portal Effective Theories: A framework for the model independent description of light hidden sector interactions, arXiv:2105.06477 [INSPIRE].

  59. A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Cosmology and Accelerator Tests of Strongly Interacting Dark Matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S.D. McDermott, H.H. Patel and H. Ramani, Dark Photon Decay Beyond The Euler-Heisenberg Limit, Phys. Rev. D 97 (2018) 073005 [arXiv:1705.00619] [INSPIRE].

    Article  ADS  Google Scholar 

  61. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE].

    Article  ADS  Google Scholar 

  63. L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].

    Article  ADS  Google Scholar 

  64. G. Passarino and M. Trott, The Standard Model Effective Field Theory and Next to Leading Order, arXiv:1610.08356 [INSPIRE].

  65. F. del Aguila, S. Bar-Shalom, A. Soni and J. Wudka, Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders, Phys. Lett. B 670 (2009) 399 [arXiv:0806.0876] [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Bhattacharya and J. Wudka, Dimension-seven operators in the standard model with right handed neutrinos, Phys. Rev. D 94 (2016) 055022 [Erratum ibid. 95 (2017) 039904] [arXiv:1505.05264] [INSPIRE].

  67. Y. Liao and X.-D. Ma, Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos, Phys. Rev. D 96 (2017) 015012 [arXiv:1612.04527] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

    Article  ADS  Google Scholar 

  69. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  71. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  73. X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, New-Z′ phenomenology, Phys. Rev. D 43 (1991) 22 [INSPIRE].

    Article  ADS  Google Scholar 

  74. X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z′ model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].

    Article  ADS  Google Scholar 

  75. C.-Y. Chen, H. Davoudiasl, W.J. Marciano and C. Zhang, Implications of a light “dark Higgs” solution to the gμ − 2 discrepancy, Phys. Rev. D 93 (2016) 035006 [arXiv:1511.04715] [INSPIRE].

    Article  ADS  Google Scholar 

  76. B. Batell, N. Lange, D. McKeen, M. Pospelov and A. Ritz, Muon anomalous magnetic moment through the leptonic Higgs portal, Phys. Rev. D 95 (2017) 075003 [arXiv:1606.04943] [INSPIRE].

    Article  ADS  Google Scholar 

  77. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the Discovery Potential for Light Dark Matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].

    Article  ADS  Google Scholar 

  78. D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [Erratum JHEP 11 (2013) 101] [arXiv:0705.1729] [INSPIRE].

  79. Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].

    Article  ADS  Google Scholar 

  80. Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M. Karliner, M. Low, J.L. Rosner and L.-T. Wang, Radiative return capabilities of a high-energy, high-luminosity e+e− collider, Phys. Rev. D 92 (2015) 035010 [arXiv:1503.07209] [INSPIRE].

    Article  ADS  Google Scholar 

  83. E.A. Kuraev and V.S. Fadin, On Radiative Corrections to e+e− Single Photon Annihilation at High-Energy, Sov. J. Nucl. Phys. 41 (1985) 466 [Yad. Fiz. 41 (1985) 733] [INSPIRE].

  84. O. Nicrosini and L. Trentadue, Soft Photons and Second Order Radiative Corrections to e+e− → Z0, Phys. Lett. B 196 (1987) 551 [INSPIRE].

    Article  ADS  Google Scholar 

  85. C. Chen et al., H → e+e− at CEPC: ISR effect with MadGraph, arXiv:1705.04486 [INSPIRE].

  86. Q. Li and Q.-S. Yan, Initial State Radiation Simulation with MadGraph, arXiv:1804.00125 [INSPIRE].

  87. M. Greco, T. Han and Z. Liu, ISR effects for resonant Higgs production at future lepton colliders, Phys. Lett. B 763 (2016) 409 [arXiv:1607.03210] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].

    Article  ADS  Google Scholar 

  89. I. Boiarska, K. Bondarenko, A. Boyarsky, V. Gorkavenko, M. Ovchynnikov and A. Sokolenko, Phenomenology of GeV-scale scalar portal, JHEP 11 (2019) 162 [arXiv:1904.10447] [INSPIRE].

    Article  ADS  Google Scholar 

  90. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  91. Belle-II collaboration, Belle II Technical Design Report, arXiv:1011.0352 [INSPIRE].

  92. Belle-II collaboration, The Belle II Physics Book, Prog. Theor. Exp. Phys. 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  93. Belle II Tracking Group, Track finding at Belle II, Comput. Phys. Commun. 259 (2021) 107610 [arXiv:2003.12466] [INSPIRE].

  94. Particle Data collaboration, Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01 [INSPIRE].

  95. ATLAS collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004 [arXiv:1504.05162] [INSPIRE].

  96. CMS collaboration, Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, arXiv:2104.13474 [INSPIRE].

  97. E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  98. G.C. Fox and S. Wolfram, Observables for the Analysis of Event Shapes in e+e− Annihilation and Other Processes, Phys. Rev. Lett. 41 (1978) 1581 [INSPIRE].

    Article  ADS  Google Scholar 

  99. BaBar collaboration, Production of charged pions, kaons, and protons in e+e− annihilations into hadrons at \( \sqrt{s} \) = 10.54 GeV, Phys. Rev. D 88 (2013) 032011 [arXiv:1306.2895] [INSPIRE].

  100. Belle collaboration, Production cross sections of hyperons and charmed baryons from e+e− annihilation near \( \sqrt{s} \) = 10.52 GeV, Phys. Rev. D 97 (2018) 072005 [arXiv:1706.06791] [INSPIRE].

  101. LHCb collaboration, Search for massive long-lived particles decaying semileptonically in the LHCb detector, Eur. Phys. J. C 77 (2017) 224 [arXiv:1612.00945] [INSPIRE].

  102. LHCb collaboration, Updated search for long-lived particles decaying to jet pairs, Eur. Phys. J. C 77 (2017) 812 [arXiv:1705.07332] [INSPIRE].

  103. B. Shuve and M.E. Peskin, Revision of the LHCb Limit on Majorana Neutrinos, Phys. Rev. D 94 (2016) 113007 [arXiv:1607.04258] [INSPIRE].

    Article  ADS  Google Scholar 

  104. X. Cid Vidal, Y. Tsai and J. Zurita, Exclusive displaced hadronic signatures in the LHC forward region, JHEP 01 (2020) 115 [arXiv:1910.05225] [INSPIRE].

    Article  ADS  Google Scholar 

  105. B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . . : Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [Erratum JHEP 09 (2019) 019] [arXiv:1512.03433] [INSPIRE].

  106. R.E. Shrock, General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].

  107. R.E. Shrock, General Theory of Weak Processes Involving Neutrinos. 2. Pure Leptonic Decays, Phys. Rev. D 24 (1981) 1275 [INSPIRE].

  108. M. Gronau, C.N. Leung and J.L. Rosner, Extending Limits on Neutral Heavy Leptons, Phys. Rev. D 29 (1984) 2539 [INSPIRE].

    Article  ADS  Google Scholar 

  109. A. Aparici, K. Kim, A. Santamaria and J. Wudka, Right-handed neutrino magnetic moments, Phys. Rev. D 80 (2009) 013010 [arXiv:0904.3244] [INSPIRE].

    Article  ADS  Google Scholar 

  110. J.F. Donoghue, E. Golowich and B.R. Holstein, Dynamics of the standard model, second edition, in Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology 35, Cambridge University Press, Cambridge U.K. (2014) [INSPIRE].

  111. N. Isgur, C. Morningstar and C. Reader, The a1 in τ Decay, Phys. Rev. D 39 (1989) 1357 [INSPIRE].

    Article  ADS  Google Scholar 

  112. M. Vojik and P. Lichard, Three-pion decays of the tau lepton, the a1(1260) properties, and the a1ρπ Lagrangian, arXiv:1006.2919 [INSPIRE].

  113. F. Klingl, N. Kaiser and W. Weise, Effective Lagrangian approach to vector mesons, their structure and decays, Z. Phys. A 356 (1996) 193 [hep-ph/9607431] [INSPIRE].

  114. CLEO collaboration, Hadronic structure in the decay τ− → ντπ−π0π0 and the sign of the tau neutrino helicity, Phys. Rev. D 61 (2000) 012002 [hep-ex/9902022] [INSPIRE].

  115. M. Claudson, M.B. Wise and L.J. Hall, Chiral Lagrangian for Deep Mine Physics, Nucl. Phys. B 195 (1982) 297 [INSPIRE].

    Article  ADS  Google Scholar 

  116. M. Harada and K. Yamawaki, Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition, Phys. Rept. 381 (2003) 1 [hep-ph/0302103] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Harvey Mudd College, 301 Platt Blvd., Claremont, CA, 91711, USA

    Mason Acevedo, Albany Blackburn, Brian Shuve & Mavis Stone

  2. Theory Group, Fermilab, Kirk Rd & Pine St W, Batavia, IL, 60510, USA

    Nikita Blinov

  3. Kavli Institute for Cosmological Physics, Eckhardt Research Center, 5640 South Ellis Avenue, Chicago, IL, 60637, USA

    Nikita Blinov

  4. Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada

    Nikita Blinov

Authors
  1. Mason Acevedo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Albany Blackburn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nikita Blinov
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Brian Shuve
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Mavis Stone
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Brian Shuve.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.12744

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acevedo, M., Blackburn, A., Blinov, N. et al. Multi-track displaced vertices at B-factories. J. High Energ. Phys. 2021, 154 (2021). https://doi.org/10.1007/JHEP09(2021)154

Download citation

  • Received: 14 June 2021

  • Accepted: 27 August 2021

  • Published: 23 September 2021

  • DOI: https://doi.org/10.1007/JHEP09(2021)154

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective Field Theories
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.