Skip to main content

Advertisement

SpringerLink
Instanton worldlines in five-dimensional Ω-deformed gauge theory
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 15 September 2021

Instanton worldlines in five-dimensional Ω-deformed gauge theory

  • N. Lambert1,
  • A. Lipstein  ORCID: orcid.org/0000-0002-0213-186X2,
  • R. Mouland1 &
  • …
  • P. Richmond1 

Journal of High Energy Physics volume 2021, Article number: 86 (2021) Cite this article

  • 74 Accesses

  • 2 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We discuss the Bosonic sector of a class of supersymmetric non-Lorentzian five-dimensional gauge field theories with an SU(1, 3) conformal symmetry. These actions have a Lagrange multiplier which imposes a novel Ω-deformed anti-self-dual gauge field constraint. Using a generalised ’t Hooft ansatz we find the constraint equation linearizes allowing us to construct a wide class of explicit solutions. These include finite action configurations that describe worldlines of anti-instantons which can be created and annihilated. We also describe the dynamics on the constraint surface.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Witten, Some comments on string dynamics, in STRINGS 95: Future Perspectives in String Theory (1995), pp. 501–523 [hep-th/9507121] [INSPIRE].

  3. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Lambert, A. Lipstein and P. Richmond, Non-Lorentzian M5-brane Theories from Holography, JHEP 08 (2019) 060 [arXiv:1904.07547] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. N. Lambert and T. Orchard, Non-Lorentzian Avatars of (1, 0) Theories, arXiv:2011.06968 [INSPIRE].

  7. O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. O. Aharony, M. Berkooz, S. Kachru and E. Silverstein, Matrix description of (1, 0) theories in six-dimensions, Phys. Lett. B 420 (1998) 55 [hep-th/9709118] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Lambert, A. Lipstein, R. Mouland and P. Richmond, Five-Dimensional Non-Lorentzian Conformal Field Theories and their Relation to Six-Dimensions, JHEP 03 (2021) 053 [arXiv:2012.00626] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Lambert, A. Lipstein, R. Mouland and P. Richmond, Bosonic symmetries of (2, 0) DLCQ field theories, JHEP 01 (2020) 166 [arXiv:1912.02638] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE].

  12. N. Aronszajn and W.F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part, Journal d’Analyse Mathematique 5 (1956) 321.

    Article  Google Scholar 

  13. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Instanton Operators in Five-Dimensional Gauge Theories, JHEP 03 (2015) 019 [arXiv:1412.2789] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].

  15. O. Bergman and D. Rodriguez-Gomez, A Note on Instanton Operators, Instanton Particles, and Supersymmetry, JHEP 05 (2016) 068 [arXiv:1601.00752] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Lambert, A. Lipstein, R. Mouland and P. Richmond, Five-Dimensional Path Integrals for Six-Dimensional Conformal Field Theories, arXiv:2109.04829 [INSPIRE].

  17. G. Arutyunov and E. Sokatchev, Implications of superconformal symmetry for interacting (2, 0) tensor multiplets, Nucl. Phys. B 635 (2002) 3 [hep-th/0201145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. P.J. Heslop, Aspects of superconformal field theories in six dimensions, JHEP 07 (2004) 056 [hep-th/0405245] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Rastelli and X. Zhou, Holographic Four-Point Functions in the (2, 0) Theory, JHEP 06 (2018) 087 [arXiv:1712.02788] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Heslop and A.E. Lipstein, M-theory Beyond The Supergravity Approximation, JHEP 02 (2018) 004 [arXiv:1712.08570] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S.M. Chester and E. Perlmutter, M-Theory Reconstruction from (2, 0) CFT and the Chiral Algebra Conjecture, JHEP 08 (2018) 116 [arXiv:1805.00892] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Abl, P. Heslop and A.E. Lipstein, Recursion relations for anomalous dimensions in the 6d (2, 0) theory, JHEP 04 (2019) 038 [arXiv:1902.00463] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. L.F. Alday and X. Zhou, All Tree-Level Correlators for M-theory on AdS7 × S4, Phys. Rev. Lett. 125 (2020) 131604 [arXiv:2006.06653] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. L.F. Alday, S.M. Chester and H. Raj, 6d (2, 0) and M-theory at 1-loop, JHEP 01 (2021) 133 [arXiv:2005.07175] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Lambert and P. Richmond, (2, 0) Supersymmetry and the Light-Cone Description of M5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].

  26. R. Mouland, Supersymmetric soliton σ-models from non-Lorentzian field theories, JHEP 04 (2020) 129 [arXiv:1911.11504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Tong, TASI lectures on solitons: Instantons, monopoles, vortices and kinks, in Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of String Theory, (2005) [hep-th/0509216] [INSPIRE].

  28. N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton calculus and the AdS/CFT correspondence in N = 4 superconformal field theory, Nucl. Phys. B 552 (1999) 88 [hep-th/9901128] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, King’s College London, The Strand, WC2R 2LS, U.K.

    N. Lambert, R. Mouland & P. Richmond

  2. Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, U.K.

    A. Lipstein

Authors
  1. N. Lambert
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Lipstein
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. R. Mouland
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. P. Richmond
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Lipstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.02008

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambert, N., Lipstein, A., Mouland, R. et al. Instanton worldlines in five-dimensional Ω-deformed gauge theory. J. High Energ. Phys. 2021, 86 (2021). https://doi.org/10.1007/JHEP09(2021)086

Download citation

  • Received: 30 May 2021

  • Accepted: 22 August 2021

  • Published: 15 September 2021

  • DOI: https://doi.org/10.1007/JHEP09(2021)086

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • M-Theory
  • Solitons Monopoles and Instantons
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.