Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Light-ray moments as endpoint contributions to modular Hamiltonians

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 September 2021
  • volume 2021, Article number: 74 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Light-ray moments as endpoint contributions to modular Hamiltonians
Download PDF
  • Daniel Kabat  ORCID: orcid.org/0000-0001-9845-60111,2,
  • Gilad Lifschyt3,
  • Phuc Nguyen1,3 &
  • …
  • Debajyoti Sarkar4 
  • 117 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We consider excited states in a CFT, obtained by applying a weak unitary perturbation to the vacuum. The perturbation is generated by the integral of a local operator J(n) of modular weight n over a spacelike surface passing through x = 0. For |n| ≥ 2 the modular Hamiltonian associated with a division of space at x = 0 picks up an endpoint contribution, sensitive to the details of the perturbation (including the shape of the spacelike surface) at x = 0. The endpoint contribution is a sum of light-ray moments of the perturbing operator J(n) and its descendants. For perturbations on null planes only moments of J(n) itself contribute.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R. Haag, Local quantum physics: Fields, particles, algebras, Springer Verlag, Heidelberg Germany (1992).

    Book  Google Scholar 

  2. H.J. Borchers, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys. 41 (2000) 3604 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. P.D. Hislop and R. Longo, Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  7. G. Sárosi and T. Ugajin, Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, JHEP 01 (2018) 012 [arXiv:1705.01486] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Lashkari, H. Liu and S. Rajagopal, Perturbation Theory for the Logarithm of a Positive Operator, arXiv:1811.05619 [INSPIRE].

  9. D. Kabat, G. Lifschytz, P. Nguyen and D. Sarkar, Endpoint contributions to excited-state modular Hamiltonians, JHEP 12 (2020) 128 [arXiv:2006.13317] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Das and B. Ezhuthachan, Modular Hamiltonians and large diffeomorphisms in AdS3, JHEP 12 (2018) 096 [arXiv:1808.09136] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi entropies, Phys. Rev. D 91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Lashkari, Modular Hamiltonian for Excited States in Conformal Field Theory, Phys. Rev. Lett. 117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Faulkner, R.G. Leigh and O. Parrikar, Shape Dependence of Entanglement Entropy in Conformal Field Theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. G. Sárosi and T. Ugajin, Relative entropy of excited states in two dimensional conformal field theories, JHEP 07 (2016) 114 [arXiv:1603.03057] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einstein’s equations, JHEP 05 (2018) 147 [arXiv:1802.10103] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Longo, Entropy distribution of localised states, Commun. Math. Phys. 373 (2019) 473 [arXiv:1809.03358] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Lashkari, H. Liu and S. Rajagopal, Modular Flow of Excited States, arXiv:1811.05052 [INSPIRE].

  20. J. De Boer and L. Lamprou, Holographic Order from Modular Chaos, JHEP 06 (2020) 024 [arXiv:1912.02810] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. F. Rosso, Global aspects of conformal symmetry and the ANEC in dS and AdS, JHEP 03 (2020) 186 [arXiv:1912.08897] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Balakrishnan and O. Parrikar, Modular Hamiltonians for Euclidean Path Integral States, arXiv:2002.00018 [INSPIRE].

  23. R. Arias, M. Botta-Cantcheff, P.J. Martinez and J.F. Zarate, Modular Hamiltonian for holographic excited states, Phys. Rev. D 102 (2020) 026021 [arXiv:2002.04637] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. F. Rosso, Achronal averaged null energy condition for extremal horizons and (A)dS, JHEP 07 (2020) 023 [arXiv:2005.06476] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Córdova and S.-H. Shao, Light-ray Operators and the BMS Algebra, Phys. Rev. D 98 (2018) 125015 [arXiv:1810.05706] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence, and a Stringy Equivalence Principle, JHEP 11 (2020) 096 [arXiv:1904.05905] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. K.-W. Huang, Lightcone Commutator and Stress-Tensor Exchange in d > 2 CFTs, Phys. Rev. D 102 (2020) 021701 [arXiv:2002.00110] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Belin, D.M. Hofman, G. Mathys and M.T. Walters, On the stress tensor light-ray operator algebra, JHEP 05 (2021) 033 [arXiv:2011.13862] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Entropy on a null surface for interacting quantum field theories and the Bousso bound, Phys. Rev. D 91 (2015) 084030 [arXiv:1406.4545] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Giombi, Higher Spin — CFT Duality, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, Boulder U.S.A. (2017), pg. 137 [arXiv:1607.02967] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Blvd. W, Bronx, NY, 10468, USA

    Daniel Kabat & Phuc Nguyen

  2. Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA

    Daniel Kabat

  3. Department of Mathematics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel

    Gilad Lifschyt & Phuc Nguyen

  4. Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India

    Debajyoti Sarkar

Authors
  1. Daniel Kabat
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gilad Lifschyt
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Phuc Nguyen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Debajyoti Sarkar
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Kabat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.08636

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabat, D., Lifschyt, G., Nguyen, P. et al. Light-ray moments as endpoint contributions to modular Hamiltonians. J. High Energ. Phys. 2021, 74 (2021). https://doi.org/10.1007/JHEP09(2021)074

Download citation

  • Received: 11 June 2021

  • Accepted: 11 August 2021

  • Published: 13 September 2021

  • DOI: https://doi.org/10.1007/JHEP09(2021)074

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Field Theories in Higher Dimensions
  • Field Theories in Lower Dimensions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature