Abstract
We consider excited states in a CFT, obtained by applying a weak unitary perturbation to the vacuum. The perturbation is generated by the integral of a local operator J(n) of modular weight n over a spacelike surface passing through x = 0. For |n| ≥ 2 the modular Hamiltonian associated with a division of space at x = 0 picks up an endpoint contribution, sensitive to the details of the perturbation (including the shape of the spacelike surface) at x = 0. The endpoint contribution is a sum of light-ray moments of the perturbing operator J(n) and its descendants. For perturbations on null planes only moments of J(n) itself contribute.
References
R. Haag, Local quantum physics: Fields, particles, algebras, Springer Verlag, Heidelberg Germany (1992).
H.J. Borchers, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys. 41 (2000) 3604 [INSPIRE].
E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].
P.D. Hislop and R. Longo, Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].
J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].
G. Sárosi and T. Ugajin, Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, JHEP 01 (2018) 012 [arXiv:1705.01486] [INSPIRE].
N. Lashkari, H. Liu and S. Rajagopal, Perturbation Theory for the Logarithm of a Positive Operator, arXiv:1811.05619 [INSPIRE].
D. Kabat, G. Lifschytz, P. Nguyen and D. Sarkar, Endpoint contributions to excited-state modular Hamiltonians, JHEP 12 (2020) 128 [arXiv:2006.13317] [INSPIRE].
S. Das and B. Ezhuthachan, Modular Hamiltonians and large diffeomorphisms in AdS3, JHEP 12 (2018) 096 [arXiv:1808.09136] [INSPIRE].
A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi entropies, Phys. Rev. D 91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].
N. Lashkari, Modular Hamiltonian for Excited States in Conformal Field Theory, Phys. Rev. Lett. 117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].
T. Faulkner, R.G. Leigh and O. Parrikar, Shape Dependence of Entanglement Entropy in Conformal Field Theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].
G. Sárosi and T. Ugajin, Relative entropy of excited states in two dimensional conformal field theories, JHEP 07 (2016) 114 [arXiv:1603.03057] [INSPIRE].
T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].
H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].
A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einstein’s equations, JHEP 05 (2018) 147 [arXiv:1802.10103] [INSPIRE].
R. Longo, Entropy distribution of localised states, Commun. Math. Phys. 373 (2019) 473 [arXiv:1809.03358] [INSPIRE].
N. Lashkari, H. Liu and S. Rajagopal, Modular Flow of Excited States, arXiv:1811.05052 [INSPIRE].
J. De Boer and L. Lamprou, Holographic Order from Modular Chaos, JHEP 06 (2020) 024 [arXiv:1912.02810] [INSPIRE].
F. Rosso, Global aspects of conformal symmetry and the ANEC in dS and AdS, JHEP 03 (2020) 186 [arXiv:1912.08897] [INSPIRE].
S. Balakrishnan and O. Parrikar, Modular Hamiltonians for Euclidean Path Integral States, arXiv:2002.00018 [INSPIRE].
R. Arias, M. Botta-Cantcheff, P.J. Martinez and J.F. Zarate, Modular Hamiltonian for holographic excited states, Phys. Rev. D 102 (2020) 026021 [arXiv:2002.04637] [INSPIRE].
F. Rosso, Achronal averaged null energy condition for extremal horizons and (A)dS, JHEP 07 (2020) 023 [arXiv:2005.06476] [INSPIRE].
P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].
C. Córdova and S.-H. Shao, Light-ray Operators and the BMS Algebra, Phys. Rev. D 98 (2018) 125015 [arXiv:1810.05706] [INSPIRE].
M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence, and a Stringy Equivalence Principle, JHEP 11 (2020) 096 [arXiv:1904.05905] [INSPIRE].
K.-W. Huang, Lightcone Commutator and Stress-Tensor Exchange in d > 2 CFTs, Phys. Rev. D 102 (2020) 021701 [arXiv:2002.00110] [INSPIRE].
A. Belin, D.M. Hofman, G. Mathys and M.T. Walters, On the stress tensor light-ray operator algebra, JHEP 05 (2021) 033 [arXiv:2011.13862] [INSPIRE].
R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Entropy on a null surface for interacting quantum field theories and the Bousso bound, Phys. Rev. D 91 (2015) 084030 [arXiv:1406.4545] [INSPIRE].
S. Giombi, Higher Spin — CFT Duality, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, Boulder U.S.A. (2017), pg. 137 [arXiv:1607.02967] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2103.08636
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Kabat, D., Lifschyt, G., Nguyen, P. et al. Light-ray moments as endpoint contributions to modular Hamiltonians. J. High Energ. Phys. 2021, 74 (2021). https://doi.org/10.1007/JHEP09(2021)074
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2021)074
Keywords
- Conformal Field Theory
- Field Theories in Higher Dimensions
- Field Theories in Lower Dimensions